Câu hỏi:

27/06/2022 340

Ở Trung học cơ sở, ta quen thuộc với các công thức khai triển:

(a + b)2 = a2 + 2ab + b2;

(a + b)3 = a3 + 3a2b + 3ab2 + b3.

Với số tự nhiên n > 3 thì công thức khai triển của biểu thức (a + b)n sẽ như thế nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau bài học này ta sẽ trả lời được câu hỏi trên như sau:

Với n = 4, ta có:

(a + b)4 = [(a + b)2]2 = [a2 + 2ab + b2]2 = [(a2 + b2) + 2ab]2

= a4 + 2a2b2 + b4 + 2(a2 + b2).2ab + 4a2b2 = a4 + 2a2b2 + b4 + 2a3b + 2ab3 + 4a2b2

= a4 + 2a3b + 6a2b2 + 2ab3 + b4.

(a + b)5 = (a + b)3(a + b)2 = (a3 + 3a2b + 3ab2 + b3)(a2 + 2ab + b2)

= a5 + 2a4b + a3b2 + 3a4b + 6a3b2 + 3a2b3 + 3a3b2 + 6a2b3 + 3ab4 + a2b3 + 2ab4 + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Với n là một số tự nhiên ta có công thức tổng quát:

(a + b)n = \(C_n^0{a^n}.{b^0} + C_n^1{a^{n - 1}}.{b^1} + C_n^2{a^{n - 2}}.{b^2} + ... + C_n^n{a^0}.{b^n}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: (3x – 2)5 = \( = C_5^0.{\left( {3x} \right)^5} + C_5^1.{\left( {3x} \right)^4}.\left( { - 2} \right) + C_5^2.{\left( {3x} \right)^3}{\left( { - 2} \right)^2} + C_5^3.{\left( {3x} \right)^2}.{\left( { - 2} \right)^3} + C_5^4.{\left( {3x} \right)^1}{\left( { - 2} \right)^4} + C_5^5.{\left( { - 2} \right)^5}\)

= 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32

Suy ra (3x – 2)5 = 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32.

Khi đó hệ số của x3 trong khai triển là 1 080.

Vậy hệ số của x3 trong khai triển là 1 080.

Lời giải

a) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:

(3x + y)4 = \(C_4^0.{\left( {3x} \right)^4} + C_4^1.{\left( {3x} \right)^3}.y + C_4^2.{\left( {3x} \right)^2}.{y^2} + C_4^3.{\left( {3x} \right)^1}.{y^3} + C_4^4.{y^4}\)

\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).

Vậy (3x + y)4 \( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).

b) Áp dụng khai triển nhị thức Newton với a = x và b = 2, ta có:

\({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 + \(C_5^1\)x4.\({\left( { - \sqrt 2 } \right)^1}\)+ \(C_5^2\)x3\({\left( { - \sqrt 2 } \right)^2}\) + \(C_5^3\)x2\({\left( { - \sqrt 2 } \right)^3}\) + \(C_5^4\)x\({\left( { - \sqrt 2 } \right)^4}\) + \(C_5^5\)\({\left( { - \sqrt 2 } \right)^5}\)

= x5\(5\sqrt 2 \)x4 + 20x3\(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).

Vậy \({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5\(5\sqrt 2 \)x4 + 20x3\(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay