Câu hỏi:
12/07/2024 3,078a) Xét công thức khai triển (a + b)3 = a3 + 3a2b + 3ab2 + b3.
i) Liệt kê các số hạng của khai triển trên.
ii) Liệt kê các hệ số của khai triển trên.
iii) Tính giá trị của \(C_3^0;C_3^1;C_3^2;C_3^3\) (có thể sử dụng máy tính) rồi so sánh với các hệ số trên. Có nhận xét gì?
b) Hoàn thành biến đổi sau đây để tìm công thức khai triển của (a + b)4:
(a + b)4 = (a + b)(a + b)3 = = a4 + a3b2 + a2b2 + ab3 + b4.
Tính giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\), rồi so sánh với các hệ số của khai triển.
Từ đó, hãy sử dụng các kí hiệu \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) để viết lại công thức khai triển trên.
c) Từ kết quả của câu a) và b), hãy dự đoán công thức khai triển của (a + b)5. Tính toán để kiểm tra dự đoán đó.
Câu hỏi trong đề: Bài tập Toán 10 Bài 3. Nhị thức Newtơn có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
a) Xét công thức khai triển (a + b)3 = a3 + 3a2b + 3ab2 + b3, có:
i) Các số hạng của khai triển trên là: a3; 3a2b; 3ab2; b3.
ii) Tương ứng với các số hạng ta có các hệ số xuất hiện trong khai triển trên lần lượt là: 1; 3; 3; 1.
Khi đó ta thấy \(C_3^0;C_3^1;C_3^2;C_3^3\) lần lượt bằng hệ số của các số hạng a3; 3a2b; 3ab2; b3 trong khai triển đã cho.
iii) Sử dụng máy tính ta có: \(C_3^0 = 1\), \(C_3^1 = 3\), \(C_3^2 = 3\), \(C_3^3 = 1\).
b) Ta có: (a + b)4 = (a + b)(a + b)3
= (a + b)(a3 + 3a2b + 3ab2 + b3)
= a4 + 3a3b + 3a2b2 + ab3 + a3b + 3a2b2 + 3ab3 + b4
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
Bằng cách sử dụng máy tính, giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) lần lượt là:
\(C_4^0 = 1,C_4^1 = 4,C_4^2 = 6,C_4^3 = 4,C_4^4 = 1\).
Khi đó ta thấy \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) lần lượt bằng hệ số của các số hạng a4; 4a3b; 6a2b2; 4ab3; b4 trong khai triển đã cho.
Bằng cách sử dụng các kí hiệu \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\), ta viết lại công thức khai triển trên như sau:
(a + b)4 = \(C_4^0\)a4 + \(C_4^1\)a3b + \(C_4^2\)a2b2 + \(C_4^3\)ab3 + \(C_4^4\)b4.
c) Từ kết quả câu câu a) và b) ta có dự đoán sau:
(a + b)5 = \(C_5^0\)a5b0 + \(C_5^1\)a4b1 + \(C_5^2\)a3b2 + \(C_5^3\)a2b3 + \(C_5^4\)ab4 + \(C_5^5\)b5
= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.
Kiểm tra dự đoán:
(a + b)5 = (a + b)3.(a + b)2 = (a3 + 3a2b + 3ab2 + b3)(a2 + 2ab + b2)
= a5 + 2a4b + a3b2 + 3a4b + 6a3b2 + 3a2b3 + 3a3b2 + 6a2b3 + 3ab4 + a2b3 + 2ab4 + b5
= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau:
a) (3x + y)4;
b) \({\left( {x - \sqrt 2 } \right)^5}\).
Câu 3:
Khai triển và rút gọn các biểu thức sau:
a) \({\left( {2 + \sqrt 2 } \right)^4}\);
b) \({\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4}\);
c) \({\left( {1 - \sqrt 3 } \right)^5}\).
Câu 4:
Câu 5:
Chứng minh rằng \(C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = 0\).
Câu 6:
Trên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong số các vé xổ số đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận