Câu hỏi:

13/07/2024 3,518 Lưu

Cho bốn điểm A, B, C, D. Chứng minh rằng AB=CD khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

+) Có AB=CD, cần chứng minh trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Gọi trung điểm của AD là I, trung điểm BC là J.

Khi đó ta có: IA+ID=0,   JB+JC=0.

Theo quy tắc ba điểm ta có:

IJ=IA+AJ=IA+AB+BJ

IJ=ID+DJ=ID+DC+CJ

Suy ra: IJ+IJ=(IA+AB+BJ)+(ID+DC+CJ)

=(IA+ID)+(AB+DC)+(BJ+CJ)

=0+(AB+DC)(JB+JC)

=(AB+DC)0=AB+DC.

Do đó: AB+DC=2IJ  (1)

AB=CD nên AB+DC=CD+DC=CC=0  (2)

Từ (1) và (2) suy ra: IJ=0

Do đó I J hay trung điểm của AD và BC trùng nhau.

+) Có trung điểm của hai đoạn thẳng AD và BC trùng nhau, cần chứng minh AB=CD.

Gọi I là trung điểm của AD thì I cũng là trung điểm của BC.

Do đó: IA+ID=0,  IB+IC=0.

Theo quy tắc ba điểm ta có: AB=AI+IB;  CD=CI+ID

Suy ra: ABCD=(AI+IB)(CI+ID)=(IB+IC)(IA+ID)=00=0

AB=CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Công sinh bởi lực F 

A = |F|.AB.cos(F,AB)= 50 . 200 . cos30° = 50003 (J).

Góc tạo bởi lực F1 AB là 90°, do đó công sinh bởi lực F1 

A1 = |F1|.AB.cos(F1,AB)= |F1|.200.cos90°=0  (J).

Ta có: |F2|=|F|.cos30°=50.32=253 (N)

Hai vectơ F2 AB cùng hướng nên (F2,  AB)=0°.

Do đó công sinh bởi lực F2 

A2 = |F2|.AB.cos(F2,AB)= 253.200.cos0°=50003  (J).

Lời giải

Media VietJack

ABCD là hình thoi nên AB = BC = CD = DA = a.

Xét tam giác ABD có AB = AD và BAD^=60° nên tam giác ABD đều.

Suy ra BD = AB = AD = a.

Ta có: ADC^=180°BAD^=180°60°=120° .

Áp dụng định lí côsin trong tam giác ADC ta có:

AC2 = AD2 + DC2 – 2 . AD . DC . cosADC

= a2 + a2 – 2 . a . a . cos120° = 3a2

Suy ra: AC = a3 .

+ Vì ABCD là hình thoi nên ABCD cũng là hình bình hành nên theo quy tắc hình bình hành ta có: p=AB+AD=AC .

Do đó: |p|=|AC|=AC=a3 .

+ Ta có:u=ABAD=DB

Do đó: |u|=|DB|=DB=a .

+ Ta có: v=2ABAC=2AB(AB+AD)=ABAD=DB

Do đó: |v|=|DB|=DB=a .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP