Câu hỏi:

13/07/2024 1,982

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng MD+ME+MF=32MO.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tam giác ABC đều nên A^=B^=C^=60°.

Media VietJack

Qua M kẻ: HG // AB, IJ // BC, KL // AC với H, L BC; K, J AB; G, I AC.

Khi đó ta có AKMG, BJMH, MLCI là các hình bình hành.

Theo quy tắc hình hình hành ta có:

MK+MG=MA;  MH+MJ=MB;  MI+ML=MC.                (1)

Ta có: MH // AB MHL^=B^=60° (đồng vị)

ML // AC MLH^=C^=60° (đồng vị)

Tam giác MHL có MHL^=MLH^=60° nên tam giác MHL đều.

Có MD vuông góc với HL nên MD đồng thời là đường trung tuyến của tam giác MHL.

Suy ra D là trung điểm của HL.

Khi đó ta có: MH+ML=2MD.

Chứng minh tương tự ta có: MK+MJ=2MF; MG+MI=2ME.

Do đó: 2MD+2ME+2MF=MH+ML+MG+MI+MK+MJ

=(MK+MG)+(MH+MJ)+(MI+ML)  (2)

Từ (1) và (2) suy ra: 2(MD+ME+MF)=MA+MB+MC

Mà O là trọng tậm của tam giác ABC nên MA+MB+MC=3MO

Do đó: 2(MD+ME+MF)=3MO

Suy ra MD+ME+MF=32MO.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Công sinh bởi lực F 

A = |F|.AB.cos(F,AB)= 50 . 200 . cos30° = 50003 (J).

Góc tạo bởi lực F1 AB là 90°, do đó công sinh bởi lực F1 

A1 = |F1|.AB.cos(F1,AB)= |F1|.200.cos90°=0  (J).

Ta có: |F2|=|F|.cos30°=50.32=253 (N)

Hai vectơ F2 AB cùng hướng nên (F2,  AB)=0°.

Do đó công sinh bởi lực F2 

A2 = |F2|.AB.cos(F2,AB)= 253.200.cos0°=50003  (J).

Lời giải

a) Vectơ v1 là vectơ vận tốc của thuyền so với dòng nước, do đó: |v1|=0,75 m/s.

Vectơ v2 là vectơ vận tốc của dòng nước so với bờ, do đó: |v2|=1,20 m/s.

Áp dụng định lí Pythagore ta có:

|v|2=|v1|2+|v2|2=(0,75)2+(1,20)2=2,0025

Suy ra: |v|=2,0025=38920 m/s.

b) Vectơ v là vectơ vận tốc của thuyền so với bờ nên tốc độ dịch chuyển của thuyền so với bờ là |v|=38920m/s.

c) Ta có: cos(v1,v)=|v1||v|=0,7538920=58989.

Suy ra (v1,v)58°.

Vậy góc tạo bởi hướng dịch chuyển của thuyền so với bờ là θ = 90° – 58° = 32°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay