Tìm biệt thức và nghiệm của tam thức bậc hai sau:
a) f(x) = 2x2 – 5x + 2;
b) g(x) = – x2 + 6x – 9;
c) h(x) = 4x2 – 4x + 9.
Tìm biệt thức và nghiệm của tam thức bậc hai sau:
a) f(x) = 2x2 – 5x + 2;
b) g(x) = – x2 + 6x – 9;
c) h(x) = 4x2 – 4x + 9.
Quảng cáo
Trả lời:

a) Tam thức bậc hai f(x) = 2x2 – 5x + 2 có ∆ = (-5)2 – 4.2.2 = 25 – 16 = 9 > 0. Do đó f(x) có hai nghiệm phân biệt là:
x1 = = 2 và x2 = .
Vậy biệt thức ∆ = 9 và tam thức có hai nghiệm phân biệt x1 = 2 và x2 = .
b) Tam thức bậc hai g(x) = – x2 + 6x – 9 có ∆ = 62 – 4.(-1).(-9) = 36 – 36 = 0. Do đó g(x) có nghiệm kép là:
x1 = x2 = .
Vậy biệt thức ∆ = 0 và tam thức có hai nghiệm kép x = 3.
c) Tam thức bậc hai h(x) = 4x2 – 4x + 9 có ∆ = 42 – 4.4.9 = 16 – 144 = - 128 < 0. Do đó f(x) vô nghiệm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích khung dây thép hình chữ nhật ban đầu là: 20.15 = 300 (cm2).
Diện tích khung hình chữ nhật mới là: (20 + x)(15 – x) = 300–5x – x2 (cm2).
Xét hiệu f(x) = 300 – 300 + 5x + x2 = x2 + 5x.
Ta có f(x) = x2 – 5x là tam thức bậc hai có ∆ = 52 – 4.1.0 = 25 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 0, x2 = -5 và a = 1 > 0.
Khi đó ta có bảng xét dấu:

Suy ra f(x) âm khi x thuộc khoảng (-5; 0), f(x) dương khi x thuộc hai khoảng (-∞; -5) và (0; +∞).
Vậy với x thuộc khoảng (-5; 0) thì diện tích của khung dây thép tăng lên, x thuộc hai khoảng (-∞; -5) và (0; +∞) thì diện tích của khung dây thép giảm đi, và x = - 5 hoặc x = 0 thì diện tích khung dây thép không đổi.
Lời giải
a) Xét f(x) = 2x2 + 3x + m + 1 là tam thức bậc hai với a = 2, b = 3, c = m + 1.
Ta có: ∆ = 32 – 4.2.(m + 1) = 9 – 8m – 8 = 1 – 8m.
Vì a = 2 > 0 nên để 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ thì ∆ < 0
⇔ 1 – 8m < 0
⇔ m > .
Vậy với m > thì 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ.
b) Xét g(x) = mx2 + 5x – 3.
+) Với m = 0 thì g(x) = 5x – 3.
Ta có: 5x – 3 ≤ 0 ⇔ x ≤ .
Do đó với m = 0 không thỏa mãn.
+) Với m ≠ 0 thì g(x) = mx2 + 5x – 3 là tam thức bậc hai với a = m, b = 5, c = - 3.
Ta có ∆ = 52 – 4.m.(-3) = 25 + 12m.
Để mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ thì
.
Vậy với thì mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.