Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại BC, \(BC = a\sqrt 3 ,AC = 2{\rm{a}}\). Cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 3 \). Góc giữa đường thẳng SB và mặt phẳng đáy bằng
Quảng cáo
Trả lời:
Đáp án C
Ta có \(\Delta ABC\) vuông tại \(B \Rightarrow AB = \sqrt {A{C^2} - B{C^2}} = a\).
\(SA \bot \left( {ABC} \right) \Rightarrow A\) là hình chiếu vuông góc của S lên \(\left( {ABC} \right)\).
\( \Rightarrow AB\) là hình chiếu vuông góc của SB lên \(\left( {ABC} \right)\).

Trong \(\Delta SBA\) vuông tại A: .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Vận tốc của vật chuyển động \(v = {\left( s \right)^\prime } = - \frac{3}{2}{t^2} + 12t{\rm{ }}\left( {m{\rm{/s}}} \right)\)
Khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động tức khoảng \(0 < t \le 6\)
Ta có \(v' = - 3{\rm{x}} + 12\) do \(a = - \frac{1}{2} < 0\) mà \(v' = 0 \Rightarrow t = 4\). Vậy vật đạt \({v_{\max }} \Leftrightarrow t = 4 \Rightarrow {v_{\max }} = 24{\rm{ m/s}}\).
Lời giải
Đáp án C
Hàm số đã cho nghịch biến trên khoảng \(\left( {12; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = \frac{{4m - 3}}{{{{\left( {x + 4m} \right)}^2}}} < 0\\ - 4m \le 12\end{array} \right.\left( {\forall x \in \left( {12; + \infty } \right)} \right)\)
\( \Leftrightarrow - 3 \le m < \frac{3}{4}\). Kết hợp \(m \in \mathbb{R} \Rightarrow m = \left\{ { - 3; - 2; - 1;0} \right\}\).
Vậy có 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.