Câu hỏi:

27/06/2022 270

Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con xúc sắc đó không vượt quá 5 bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 6.6 = 36\).

Gọi X là biến cố “tổng số chấm trên mặt xuất hiện của hai con xúc sắc đó không vươt quá 5

Gọi x, y lần lượt là số chấm xuất hiện trên hai con xúc sắc.

Theo bài ra, ta có: \(\left\{ \begin{array}{l}x + y \le 5\\1 \le x,y \le 6\end{array} \right. \to \left( {x;y} \right) = \left[ \begin{array}{l}\left( {1;1} \right),{\rm{ }}\left( {1;2} \right),{\rm{ }}\left( {1;3} \right),{\rm{ }}\left( {1;4} \right)\\{\rm{     }}\left( {2;1} \right),{\rm{ }}\left( {2;2} \right),{\rm{ }}\left( {2;3} \right)\\{\rm{           }}\left( {3;1} \right),{\rm{ }}\left( {3;2} \right)\\{\rm{                 }}\left( {4;1} \right)\end{array} \right.\).

Do đó, số kết quả thuận lợi cho biến cố X  \(n\left( X \right) = 4 + 3 + 2 + 1 = 10\).

Vậy xác suất cần tính là \(P = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?

Xem đáp án » 27/06/2022 21,570

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {12; + \infty } \right)\)?

Xem đáp án » 27/06/2022 15,633

Câu 3:

Số nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0\)

Xem đáp án » 27/06/2022 10,350

Câu 4:

Cho \(\int\limits_0^4 {f\left( x \right)d{\rm{x}}} = 2018\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2{\rm{x}}} \right) + f\left( {4 - 2{\rm{x}}} \right)} \right]d{\rm{x}}} \).

Xem đáp án » 27/06/2022 5,961

Câu 5:

Trong không gian Oxyz cho điểm \(I\left( {2;3;4} \right)\)\(A\left( {1;2;3} \right)\). Phương trình mặt cầu tâm I và đi qua A có phương trình là:

Xem đáp án » 27/06/2022 4,113

Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, khoảng cách từ điểm A đến \(\left( {SBC} \right)\)\(\frac{{a\sqrt {15} }}{5}\), khoảng cách giữa SA, BC\(\frac{{a\sqrt {15} }}{5}\). Biết hình chiếu của S lên \(\left( {ABC} \right)\) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC.

Xem đáp án » 27/06/2022 3,463

Câu 7:

Cho phương trình \(\log _3^2\left( {3{\rm{x}}} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\)

Xem đáp án » 27/06/2022 3,019

Bình luận


Bình luận