Câu hỏi:

27/06/2022 437 Lưu

Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con xúc sắc đó không vượt quá 5 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 6.6 = 36\).

Gọi X là biến cố “tổng số chấm trên mặt xuất hiện của hai con xúc sắc đó không vươt quá 5

Gọi x, y lần lượt là số chấm xuất hiện trên hai con xúc sắc.

Theo bài ra, ta có: \(\left\{ \begin{array}{l}x + y \le 5\\1 \le x,y \le 6\end{array} \right. \to \left( {x;y} \right) = \left[ \begin{array}{l}\left( {1;1} \right),{\rm{ }}\left( {1;2} \right),{\rm{ }}\left( {1;3} \right),{\rm{ }}\left( {1;4} \right)\\{\rm{     }}\left( {2;1} \right),{\rm{ }}\left( {2;2} \right),{\rm{ }}\left( {2;3} \right)\\{\rm{           }}\left( {3;1} \right),{\rm{ }}\left( {3;2} \right)\\{\rm{                 }}\left( {4;1} \right)\end{array} \right.\).

Do đó, số kết quả thuận lợi cho biến cố X  \(n\left( X \right) = 4 + 3 + 2 + 1 = 10\).

Vậy xác suất cần tính là \(P = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Vận tốc của vật chuyển động \(v = {\left( s \right)^\prime } = - \frac{3}{2}{t^2} + 12t{\rm{ }}\left( {m{\rm{/s}}} \right)\)

Khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động tức khoảng \(0 < t \le 6\)

Ta có \(v' = - 3{\rm{x}} + 12\) do \(a = - \frac{1}{2} < 0\)\(v' = 0 \Rightarrow t = 4\). Vậy vật đạt \({v_{\max }} \Leftrightarrow t = 4 \Rightarrow {v_{\max }} = 24{\rm{ m/s}}\).

Câu 2

Lời giải

Đáp án C

Hàm số đã cho nghịch biến trên khoảng \(\left( {12; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = \frac{{4m - 3}}{{{{\left( {x + 4m} \right)}^2}}} < 0\\ - 4m \le 12\end{array} \right.\left( {\forall x \in \left( {12; + \infty } \right)} \right)\)

\( \Leftrightarrow - 3 \le m < \frac{3}{4}\). Kết hợp \(m \in \mathbb{R} \Rightarrow m = \left\{ { - 3; - 2; - 1;0} \right\}\).

Vậy có 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP