Câu hỏi:

27/06/2022 287

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng \(\left( {SAB} \right)\), \(\left( {SBC} \right)\), \(\left( {SC{\rm{D}}} \right),{\rm{ }}\left( {S{\rm{D}}A} \right)\) với mặt đáy lần lượt là \(90^\circ ,{\rm{ }}60^\circ ,{\rm{ }}60^\circ ,{\rm{ }}60^\circ \). Biết rằng tam giác SAB vuông cân tại S, \(AB = a\) và chu vi tứ giác ABCD là 9a. Tính thể tích V của khối chóp S.ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng  (ảnh 1)

Gọi H là trung điểm của AB suy ra \(SH \bot AB\).

Do \(\left( {SAB} \right) \bot \left( {ABC{\rm{D}}} \right)\) nên \(SH \bot \left( {ABC{\rm{D}}} \right)\).

Dựng \(HM \bot BC,{\rm{ HN}} \bot {\rm{CD}},{\rm{ HP}} \bot {\rm{AD}}\).

Suy ra \(\widehat {SMH} = \widehat {SNH} = \widehat {SPH} = 60^\circ \).

Ta có: \(SH = \frac{{AB}}{2} = \frac{a}{2}\), \(HM\tan 60^\circ = HN\tan 60^\circ \)

\( = HP\tan 60^\circ = SH \Rightarrow HM = HN = HP = \frac{{a\sqrt 3 }}{6}\).

Mặt khác \({S_{ABC{\rm{D}}}} = {S_{BHC}} + {S_{CH{\rm{D}}}} + {S_{DHA}}\)

\( = \frac{1}{2}.\frac{{a\sqrt 3 }}{6}.\left( {BC + C{\rm{D}} + A{\rm{D}}} \right) = \frac{{a\sqrt 3 }}{{12}}.\left( {9{\rm{a}} - a} \right) = \frac{{2{{\rm{a}}^2}\sqrt 3 }}{3}\)

\( \Rightarrow V = \frac{1}{3}S.h = \frac{{{a^3}\sqrt 3 }}{9}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Vận tốc của vật chuyển động \(v = {\left( s \right)^\prime } = - \frac{3}{2}{t^2} + 12t{\rm{ }}\left( {m{\rm{/s}}} \right)\)

Khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động tức khoảng \(0 < t \le 6\)

Ta có \(v' = - 3{\rm{x}} + 12\) do \(a = - \frac{1}{2} < 0\)\(v' = 0 \Rightarrow t = 4\). Vậy vật đạt \({v_{\max }} \Leftrightarrow t = 4 \Rightarrow {v_{\max }} = 24{\rm{ m/s}}\).

Câu 2

Lời giải

Đáp án C

Hàm số đã cho nghịch biến trên khoảng \(\left( {12; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = \frac{{4m - 3}}{{{{\left( {x + 4m} \right)}^2}}} < 0\\ - 4m \le 12\end{array} \right.\left( {\forall x \in \left( {12; + \infty } \right)} \right)\)

\( \Leftrightarrow - 3 \le m < \frac{3}{4}\). Kết hợp \(m \in \mathbb{R} \Rightarrow m = \left\{ { - 3; - 2; - 1;0} \right\}\).

Vậy có 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP