Câu hỏi:

27/06/2022 1,102 Lưu

Cho phương trình \({\log _5}\left( {x + y} \right) + 2{{\rm{x}}^2} + {y^2} + 3{\rm{x}}y - 11{\rm{x}} - 6y + 4 = 0\). Hỏi có bao nhiêu cặp số \(\left( {x;y} \right)\) nguyên dương thỏa mãn phương trình trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương trình: \({\log _5}\left( {x + y} \right) + 2{x^2} + {y^2} + 3xy - 11x - 6y + 4 = 0\).

\( \Leftrightarrow {\log _5}\frac{{x + y}}{5} + \left( {2x + y - 1} \right)\left( {x + y} \right) - 5\left( {2x + y - 1} \right) = 0\)

\( \Leftrightarrow {\log _5}\frac{{x + y}}{5} + \left( {2x + y - 1} \right)\left( {x + y - 5} \right) = 0 \Leftrightarrow x + y - 5\)

\( \Rightarrow \) có 4 cặp số nguyên dương thỏa mãn là \(\left( {1;4} \right),{\rm{ }}\left( {2;3} \right),{\rm{ }}\left( {3;2} \right),{\rm{ }}\left( {4;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Vận tốc của vật chuyển động \(v = {\left( s \right)^\prime } = - \frac{3}{2}{t^2} + 12t{\rm{ }}\left( {m{\rm{/s}}} \right)\)

Khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động tức khoảng \(0 < t \le 6\)

Ta có \(v' = - 3{\rm{x}} + 12\) do \(a = - \frac{1}{2} < 0\)\(v' = 0 \Rightarrow t = 4\). Vậy vật đạt \({v_{\max }} \Leftrightarrow t = 4 \Rightarrow {v_{\max }} = 24{\rm{ m/s}}\).

Câu 2

Lời giải

Đáp án C

Hàm số đã cho nghịch biến trên khoảng \(\left( {12; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = \frac{{4m - 3}}{{{{\left( {x + 4m} \right)}^2}}} < 0\\ - 4m \le 12\end{array} \right.\left( {\forall x \in \left( {12; + \infty } \right)} \right)\)

\( \Leftrightarrow - 3 \le m < \frac{3}{4}\). Kết hợp \(m \in \mathbb{R} \Rightarrow m = \left\{ { - 3; - 2; - 1;0} \right\}\).

Vậy có 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP