Câu hỏi:

27/06/2022 689 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y + 2}}{2} = \frac{z}{{ - 1}}\)\({d_2}:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\). Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) sao cho góc giữa mặt phẳng \(\left( P \right)\) và đường thẳng \({d_2}\) là lớn nhất là: \(ax - y + cz + d = 0\). Giá trị của \(T = a + c + d\) bằng

A. \(T = 0\)                
B. \(T = 3\)                 
C. \(T = - \frac{{13}}{4}\)    
D. \(T = - 6\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Ta có: \({d_1} = \frac{{x - 1}}{1} = \frac{{y + 2}}{2} = \frac{z}{{ - 1}} \Rightarrow \left\{ \begin{array}{l}2{\rm{x}} - y - 4 = 0{\rm{ }}\left( \alpha \right)\\y + 2{\rm{z}} + 2 = 0{\rm{ }}\left( \beta \right)\end{array} \right.\)

Khi đó \({d_1} \subset \left( P \right) \Rightarrow \left( P \right):m\left( {2{\rm{x}} - y - 4} \right) + n\left( {y + 2{\rm{z}} + 2} \right) = 0,{\rm{ }}{{\rm{m}}^2} + {n^2} > 0\)

\( \Rightarrow \overrightarrow {{n_P}} = \left( {2m; - m + n;2n} \right)\) là VTPT của \(\left( P \right)\).

Mặt khác, \({d_2}\) có VTCP là \(\overrightarrow {{u_2}} = \left( {2; - 1;2} \right)\).

Xét

.

TH1: \(n = 0 \Rightarrow m \ne 0\), ta chọn .

TH2: \(n \ne 0\), ta chọn .

.

Lập bảng biến và nhận xét: .

Khi đó \(\frac{7}{5}\left( {2{\rm{x}} - y - 4} \right) + \left( {y + 2{\rm{z}} + 2} \right) = 0 \Rightarrow 7{\rm{x}} - y + 5{\rm{z}} - 9 = 0 \Rightarrow a = 7,c = 5,d = - 9 \Rightarrow T = a + c + d = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Vận tốc của vật chuyển động \(v = {\left( s \right)^\prime } = - \frac{3}{2}{t^2} + 12t{\rm{ }}\left( {m{\rm{/s}}} \right)\)

Khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động tức khoảng \(0 < t \le 6\)

Ta có \(v' = - 3{\rm{x}} + 12\) do \(a = - \frac{1}{2} < 0\)\(v' = 0 \Rightarrow t = 4\). Vậy vật đạt \({v_{\max }} \Leftrightarrow t = 4 \Rightarrow {v_{\max }} = 24{\rm{ m/s}}\).

Câu 2

A. 3                           
B. Vô số.                   
C. 4                           
D. 5

Lời giải

Đáp án C

Hàm số đã cho nghịch biến trên khoảng \(\left( {12; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = \frac{{4m - 3}}{{{{\left( {x + 4m} \right)}^2}}} < 0\\ - 4m \le 12\end{array} \right.\left( {\forall x \in \left( {12; + \infty } \right)} \right)\)

\( \Leftrightarrow - 3 \le m < \frac{3}{4}\). Kết hợp \(m \in \mathbb{R} \Rightarrow m = \left\{ { - 3; - 2; - 1;0} \right\}\).

Vậy có 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Câu 3

A. 3                         
B. 2                           
C. 1                           
D. 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I = 0\)                 
B. \(I = 2018\)            
C. \(I = 4036\)            
D. \(I = 1009\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x + {2^2} + y + {3^2} + {\left( {z + 4} \right)^2} = 3\)          

B. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 4} \right)^2} = 9\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 45\)   
D. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 3\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3\left( {\log a + \frac{1}{2}\log b} \right)\)                             
B. \(2\log a + 3\log b\)   
C. \(3\log a + \frac{1}{2}\log b\)                  
D. \(3\log a + 2\log b\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP