Câu hỏi:
27/06/2022 148Cho hàm số \(f\left( x \right),y = f\left[ {f\left( {2{\rm{x}} - 3} \right)} \right]\) và \(y = f\left( {{x^3} + x + 2} \right)\) lần lượt có các đồ thị \({C_1},{C_2},{C_3}\). Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của \({C_1}\) là \(y = x + 3\), phương trình tiếp tuyến tại điểm có hoành độ bằng 2 của \({C_2}\) là \(y = 8{\rm{x}} + 5\). Viết phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của đồ thị \({C_3}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án B
Ta có: \(y = f\left[ {f\left( {2{\rm{x}} - 3} \right)} \right] \Rightarrow y' = 2f'\left( {2{\rm{x}} - 3} \right).f'\left( {2{\rm{x}} - 3} \right)\)
\(y = f\left( {{x^3} + x + 2} \right) \Rightarrow y'\left( {3{{\rm{x}}^2} + 1} \right)f\left( {{x^3} + x + 2} \right)\)
Phương trình tiếp tuyến của \(\left( {{C_1}} \right)\) tại điểm có hoành độ \(x = 1\) là:
\(y = f'\left( 1 \right)\left( {x - 1} \right) + f\left( 1 \right) = x + 3 \Leftrightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 1\\ - f'\left( 1 \right) + f\left( 1 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 1\\f\left( 1 \right) = 4\end{array} \right.\)
Phương trình tiếp tuyến của \(\left( {{C_2}} \right)\) tại điểm có hoành độ \(x = 2\) là:
\(y = 2f'\left( 1 \right).f'\left[ {f\left( 1 \right)} \right]\left( {x - 2} \right) + f\left[ {f\left( 1 \right)} \right] = 2f'\left( 4 \right)\left( {x - 2} \right) + f\left( 4 \right) = 8{\rm{x}} + 5\)
\( \Leftrightarrow \left\{ \begin{array}{l}2f'\left( 4 \right) = 8\\ - 4f'\left( 4 \right) + f\left( 4 \right) = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( 4 \right) = 4\\f\left( 4 \right) = 21\end{array} \right.\).
Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại điểm có hoành độ \(x = 1\) là:
\(y = 4f\left( 4 \right)\left( {x - 1} \right) + f\left( 4 \right) = 16\left( {x - 1} \right) + 21 = 16{\rm{x}} + 5\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 3}}{{x + 4m}}\) nghịch biến trên khoảng \(\left( {12; + \infty } \right)\)?
Câu 2:
Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?
Câu 3:
Số nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0\) là
Câu 4:
Cho \(\int\limits_0^4 {f\left( x \right)d{\rm{x}}} = 2018\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2{\rm{x}}} \right) + f\left( {4 - 2{\rm{x}}} \right)} \right]d{\rm{x}}} \).
Câu 5:
Trong không gian Oxyz cho điểm \(I\left( {2;3;4} \right)\) và \(A\left( {1;2;3} \right)\). Phương trình mặt cầu tâm I và đi qua A có phương trình là:
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, khoảng cách từ điểm A đến \(\left( {SBC} \right)\) là \(\frac{{a\sqrt {15} }}{5}\), khoảng cách giữa SA, BC là \(\frac{{a\sqrt {15} }}{5}\). Biết hình chiếu của S lên \(\left( {ABC} \right)\) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC.
Câu 7:
Cho phương trình \(\log _3^2\left( {3{\rm{x}}} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\) là
về câu hỏi!