Câu hỏi:

27/06/2022 245

Cho các số phức z thỏa mãn \(\left| z \right| = 2\). Biết rằng tập hợp các điểm biểu diễn số phức \(w = 3 - 2i + \left( {4 - 3i} \right)z\) là một đường tròn. Tính bán kính r của đường tròn đó:

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Đặt \(w = x + yi\), \(\left( {x,y \in \mathbb{R}} \right)\) ta có

\(w = 3 - 2i + \left( {4 - 3i} \right)z \Leftrightarrow w - \left( {3 - 2i} \right) = \left( {4 - 3i} \right)z \Leftrightarrow \left| {w - \left( {3 - 2i} \right)} \right| = \left| {\left( {4 - 3i} \right)z} \right|\)

\( \Leftrightarrow \left| {\left( {x - 3} \right) + \left( {y + 2} \right)i} \right| = \left| {4 - 3i} \right|\left| z \right| \Leftrightarrow \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y + 2} \right)}^2}} = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}.2} \)

                                          \( \Leftrightarrow {\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 100\)

Suy ra tập hợp các điểm biểu diễn số phức \(w = 3 - 2i + \left( {4 - 3i} \right)z\) là một đường tròn có tâm \(I\left( {3; - 2} \right)\), bán kính \(r = 10\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\int\limits_0^1 {f\left( x \right)} = 3\), \(\int\limits_0^1 {g\left( x \right)} = - 2\). Tính giá trị của biểu thức \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).

Xem đáp án » 27/06/2022 7,494

Câu 2:

Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A\left( {1;2; - 1} \right)\), \(B\left( {2;1;0} \right)\) và mặt phẳng \(\left( P \right)\): \(2x + y - 3z + 1 = 0\). Gọi \(\left( Q \right)\) là mặt phẳng chứa A; B và vuông góc với \(\left( P \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là:

Xem đáp án » 27/06/2022 6,423

Câu 3:

Trong không gian tọa độ Oxyz, cho \(A\left( { - 3;1;1} \right)\), \(B\left( {1; - 1;5} \right)\) và mặt phẳng \(\left( P \right)\): \(2x - y + 2z + 11 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm A, B và tiếp xúc với mặt phẳng \(\left( P \right)\) tại điểm C. Biết C luôn thuộc đường tròn \(\left( T \right)\) cố định. Tính bán kính r của đường tròn \(\left( T \right)\).

Xem đáp án » 27/06/2022 5,556

Câu 4:

Cho a là một số thực dương, khác 1. Đặt \({\log _3}a = \alpha \). Tính giá trị của biểu thức \(P = {\log _{\frac{1}{3}}}a - {\log _{\sqrt 3 }}{a^2} + {\log _a}9\) theo \(\alpha \)

Xem đáp án » 27/06/2022 4,657

Câu 5:

Cho một hộp đựng 12 viên bi, trong đó có 7 viên bi đỏ, 5 viên bi xanh. Lấy ngẫu nhiên một lần 3 viên bi. Tính xác xuất lấy được ít nhất 2 viên bi màu xanh.

Xem đáp án » 27/06/2022 3,789

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên và đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Giá trị của biểu thức \(\int\limits_1^2 {f'\left( x \right)dx} \) bằng

Cho hàm số  y=f(x) có đồ thị như hình vẽ bên và đạo hàm  f'(x) liên tục trên R (ảnh 1)

Xem đáp án » 27/06/2022 3,449

Câu 7:

Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau: \({d_1}\): \(\frac{{x - 2}}{2} = \frac{{y + 2}}{1} = \frac{{z - 6}}{{ - 2}}\), \({d_2}\): \(\frac{{x - 4}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{3}\). Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là:

Xem đáp án » 27/06/2022 2,619
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua