Câu hỏi:

27/06/2022 238 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau:

x

\( - \infty \)

 

0

 

2

 

3

 

\( + \infty \)

\(f'\left( x \right)\)

 

0

+

0

0

 

Hàm số \(g\left( x \right) = f\left( {2 - x} \right) + \frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + 2x + 1\) nghịch biến trên khoảng nào dưới đây?

A. \(\left( {0;1} \right)\).                              
B. \(\left( {1;2} \right)\).        
C. \(\left( {2;3} \right)\).                       
D. \(\left( { - 2;0} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Ta có: \(g'\left( x \right) = f'\left( {2 - x} \right) + {x^2} - 3x + 2 = - f'\left( {2 - x} \right) + \left( {x - 1} \right)\left( {x - 2} \right)\)

Ta chọn x sao cho \(\left\{ \begin{array}{l}f'\left( {2 - x} \right) > 0\\\left( {x - 1} \right)\left( {x - 2} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < 2 - x < 2\\1 < x < 2\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}0 < x < 2\\1 < x < 2\end{array} \right. \Leftrightarrow 1 < x < 2\)

Vậy với \(x \in \left( {1;2} \right)\) thì \(g'\left( x \right) < 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {1;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2x + 5y + 3z - 9 = 0\).                           
B. \(2x + y - 3z - 7 = 0\).        
C. \(2x + y - z - 5 = 0\).                            
D. \(x + 2y - z - 6 = 0\).

Lời giải

Đáp án A

Phương trình mặt phẳng \(\left( Q \right)\) chứa AB và vuông góc với mặt phẳng \(\left( P \right)\) nên có cặp vecto chỉ phương là \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\)\(\overrightarrow {{n_P}} = \left( {2;1; - 3} \right) \Rightarrow \overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( {2;5;3} \right)\).

Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) nên \(2\left( {x - 1} \right) + 5\left( {y - 2} \right) + 3\left( {z + 1} \right) = 0 \Leftrightarrow 2x + 5y + 3z - 9 = 0\).

Câu 2

A. 12.                        
B. 9.                          
C. 6.                          
D. –6.

Lời giải

Đáp án A

Ta có \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^1 {f\left( x \right)} - 3\int\limits_0^1 {g\left( x \right)} = 12\)

Câu 4

A. \(\frac{4}{{11}}\).                                 
B. \(\frac{5}{{11}}\). 
C. \(\frac{7}{{22}}\).  
D. \(\frac{5}{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 2.                          
B. 4.                          
C. 1.                          
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P = \frac{{2 - 5{\alpha ^2}}}{\alpha }\).                                
B. \(P = - 3\alpha \).  
C. \(P = \frac{{2\left( {1 - {\alpha ^2}} \right)}}{\alpha }\).         
D. \(P = \frac{{1 - 10{\alpha ^2}}}{\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( P \right)\): \(x + 8y + 5z + 16 = 0\).                               

B. \(\left( P \right)\): \(x + 8y + 5z - 16 = 0\).

C. \(\left( P \right)\): \(2x + y - 6 = 0\).                                           
D. \(\left( P \right)\): \(x + 4y + 3z - 12 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP