Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB = BC = a\), \(AD = 2a\). Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC theo a.
Quảng cáo
Trả lời:
Đáp án D

Gọi H là trung điểm của AD. Tam giác SAD đều và \(\left( {SAD} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).
Ta có \(AH = a\), \(SH = a\sqrt 3 \) và tứ giác ABCH là hình vuông cạnh a \( \Rightarrow BH = a\sqrt 2 \).
Mặt khác \(\left\{ \begin{array}{l}AB \bot AD\\AB \bot S\end{array} \right. \Rightarrow AB \bot \left( {SAD} \right) \Rightarrow AB \bot SA\) hay \(\widehat {SAB} = 90^\circ \) \(\left( 1 \right)\)
Chứng minh tương tự ta có \(BC \bot SC\)hay \(\widehat {SCB} = 90^\circ \) \(\left( 2 \right)\).
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta thấy hai đỉnh A và C của hình chóp S.ABC cùng nhìn SB dưới một góc vuông. Do đó bốn điểm S, A, B, C cùng nằm trên mặt cầu đường kính SB.
Xét tam giác vuông SHB, ta có \(SB = \sqrt {B{H^2} + S{H^2}} = a\sqrt 5 \).
Vây diên tích mặt cầu ngoại tiếp hình chóp S.ABC là \(S = 4\pi {\left( {\frac{{SB}}{2}} \right)^2} = 5\pi {a^2}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Ta có \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^1 {f\left( x \right)} - 3\int\limits_0^1 {g\left( x \right)} = 12\)
Lời giải
Đáp án A
Phương trình mặt phẳng \(\left( Q \right)\) chứa AB và vuông góc với mặt phẳng \(\left( P \right)\) nên có cặp vecto chỉ phương là \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) và \(\overrightarrow {{n_P}} = \left( {2;1; - 3} \right) \Rightarrow \overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( {2;5;3} \right)\).
Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) nên \(2\left( {x - 1} \right) + 5\left( {y - 2} \right) + 3\left( {z + 1} \right) = 0 \Leftrightarrow 2x + 5y + 3z - 9 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.