Cho hàm số \(f\left( x \right) = \left| {{x^4} - 2{x^2} + m + 3} \right|\) (m là tham số thực ). Gọi S là tập hợp tất cả giá trị của m sao cho \(2\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 2020\). Tổng giá trị tất cả các phần tử của S bằng
Quảng cáo
Trả lời:
Đáp án C
Xét \(g\left( x \right) = {x^4} - 2{x^2} + m + 3\) trên đoạn \(\left[ {0;3} \right]\)\( \Rightarrow g'\left( x \right) = 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1 \notin \left[ {1;3} \right]\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}g\left( 0 \right) = m + 3\\g\left( 1 \right) = m + 2\\g\left( 3 \right) = m + 66\end{array} \right.\)
Suy ra \(\mathop {\min }\limits_{\left[ {0;3} \right]} g\left( x \right) = m + 2\), \(\mathop {\max }\limits_{\left[ {0;3} \right]} g\left( x \right) = m + 66\)
TH1: \[\left( {m + 1} \right)\left( {m + 66} \right) \le 0 \Leftrightarrow - 66 \le m \le - 1\]
\[\left[ \begin{array}{l}\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = \mathop {\max }\limits_{\left[ {0;3} \right]} g\left( x \right) = \frac{{\left| {m + 66 + m + 2} \right| + \left| {m + 66 - m - 2} \right|}}{2} = \left| {m + 34} \right| + 32\\\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = 0\end{array} \right.\]
Vậy \[2\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 2020 \Leftrightarrow \left| {m + 34} \right| + 3 = 2020 \Leftrightarrow \left| {m + 34} \right| = 2017 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - \end{array} \right.\](loại)
TH2: \[\left( {m + 1} \right)\left( {m + 66} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}m > - 1\\m < - 66\end{array} \right.\]
\[\left[ \begin{array}{l}\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = \mathop {\max }\limits_{\left[ {0;3} \right]} g\left( x \right) = \frac{{\left| {m + 66 + m + 2} \right| + \left| {m + 66 - m - 2} \right|}}{2} = \left| {m + 34} \right| + 32\\\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = \frac{{\left| {m + 66 + m + 2} \right| - \left| {m + 66 - m - 2} \right|}}{2} = \left| {m + 34} \right| - 32\end{array} \right.\]
\( \Rightarrow 2\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 2020 \Leftrightarrow \left| {m + 34} \right| + 3 = 2020 \Leftrightarrow 2\left( {\left| {m + 34} \right| - 32} \right) + \left| {m + 34} \right| + 32 = 2020\)
\( \Leftrightarrow 3\left| {m + 34} \right| = 2052 \Leftrightarrow \left| {m + 34} \right| = 684 \Leftrightarrow \left[ \begin{array}{l}m = 650\\m = - 718\end{array} \right.\left( N \right)\)
Suy ra \({m_1} + {m_2} = - 718 + 650 = - 68\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Ta có \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^1 {f\left( x \right)} - 3\int\limits_0^1 {g\left( x \right)} = 12\)
Lời giải
Đáp án A
Phương trình mặt phẳng \(\left( Q \right)\) chứa AB và vuông góc với mặt phẳng \(\left( P \right)\) nên có cặp vecto chỉ phương là \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) và \(\overrightarrow {{n_P}} = \left( {2;1; - 3} \right) \Rightarrow \overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( {2;5;3} \right)\).
Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) nên \(2\left( {x - 1} \right) + 5\left( {y - 2} \right) + 3\left( {z + 1} \right) = 0 \Leftrightarrow 2x + 5y + 3z - 9 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.