Câu hỏi:

27/06/2022 1,147 Lưu

Cho 3 số thực a, b, c thỏa mãn \({\log _2}\frac{{a + b + c}}{{{a^2} + {b^2} + {c^2} + 2}} = a\left( {a - 4} \right) + b\left( {b - 4} \right) + c\left( {c - 4} \right)\). Giá trị lớn nhất của biểu thức \(P = \frac{{a + 2b + 3c}}{{a + b + c}}\).

A. \(\frac{{12 + \sqrt {30} }}{3}\).             
B. \(\frac{{4 + \sqrt {30} }}{3}\).   
C. \(\frac{{8 + \sqrt {30} }}{3}\).                      
D. \(\frac{{6 + \sqrt {30} }}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Biến đổi giả thiết ta có: \({\log _2}\frac{{a + b + c}}{{{a^2} + {b^2} + {c^2} + 2}} = a\left( {a - 4} \right) + b\left( {b - 4} \right) + c\left( {c - 4} \right)\)

\( \Leftrightarrow {\log _2}\left( {a + b + c} \right) + 2 + 4\left( {a + b + c} \right) = {\log _2}\left( {{a^2} + {b^2} + {c^2} + 2} \right) + {a^2} + {b^2} + {c^2} + 2\)

\( \Leftrightarrow {\log _2}4\left( {a + b + c} \right) + 4\left( {a + b + c} \right) = {\log _2}\left( {{a^2} + {b^2} + {c^2} + 2} \right) + {a^2} + {b^2} + {c^2} + 2\)

Xét hàm số \(f\left( t \right) = {\log _2}t + t\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Khi đó \(f\left[ {4\left( {a + b + c} \right)} \right] = f\left( {{a^2} + {b^2} + {c^2} + 2} \right) \Leftrightarrow 4\left( {a + b + c} \right) = {a^2} + {b^2} + {c^2} + 2\)

\( \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} = 10\)    \(\left( S \right)\)

Điểm \(M\left( {a;b;c} \right)\)thuộc mặt cầu \(\left( S \right)\): \({\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} = 10\)

Mặt khác \(P = \frac{{a + 2b + 3c}}{{a + b + c}} \Leftrightarrow a\left( {P - 1} \right) + b\left( {P - 2} \right) + c\left( {P - 3} \right) = 0\)  \(\left( P \right)\)

Điều kiện để \(\left( P \right)\)\(\left( S \right)\) có giao điểm là \(d\left( {I;\left( P \right)} \right) \le R\left( {I\left( {2;2;2} \right);R = \sqrt {10} } \right) \Leftrightarrow \frac{{\left| {6P - 12} \right|}}{{\sqrt {3{P^2} - 12P + 14} }} \le \sqrt {10} \)

\( \Leftrightarrow P \le \frac{{6 + \sqrt {30} }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2x + 5y + 3z - 9 = 0\).                           
B. \(2x + y - 3z - 7 = 0\).        
C. \(2x + y - z - 5 = 0\).                            
D. \(x + 2y - z - 6 = 0\).

Lời giải

Đáp án A

Phương trình mặt phẳng \(\left( Q \right)\) chứa AB và vuông góc với mặt phẳng \(\left( P \right)\) nên có cặp vecto chỉ phương là \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\)\(\overrightarrow {{n_P}} = \left( {2;1; - 3} \right) \Rightarrow \overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( {2;5;3} \right)\).

Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) nên \(2\left( {x - 1} \right) + 5\left( {y - 2} \right) + 3\left( {z + 1} \right) = 0 \Leftrightarrow 2x + 5y + 3z - 9 = 0\).

Câu 2

A. 12.                        
B. 9.                          
C. 6.                          
D. –6.

Lời giải

Đáp án A

Ta có \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^1 {f\left( x \right)} - 3\int\limits_0^1 {g\left( x \right)} = 12\)

Câu 4

A. \(\frac{4}{{11}}\).                                 
B. \(\frac{5}{{11}}\). 
C. \(\frac{7}{{22}}\).  
D. \(\frac{5}{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 2.                          
B. 4.                          
C. 1.                          
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P = \frac{{2 - 5{\alpha ^2}}}{\alpha }\).                                
B. \(P = - 3\alpha \).  
C. \(P = \frac{{2\left( {1 - {\alpha ^2}} \right)}}{\alpha }\).         
D. \(P = \frac{{1 - 10{\alpha ^2}}}{\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( P \right)\): \(x + 8y + 5z + 16 = 0\).                               

B. \(\left( P \right)\): \(x + 8y + 5z - 16 = 0\).

C. \(\left( P \right)\): \(2x + y - 6 = 0\).                                           
D. \(\left( P \right)\): \(x + 4y + 3z - 12 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP