Câu hỏi:

28/06/2022 6,788

Trong không gian \(Oxyz\), mặt phẳng \(\left( P \right)\) chứa trục \(Oz\) và đi qua điểm \(M\left( { - 1;1; - 1} \right)\) có phương trình là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp giải:

- Áp dụng công thức tính tích có hương giữa hai vecto \(\vec k = \left( {0;0;1} \right)\)\[\overrightarrow {OM} \] để suy ra vecto pháp tuyến của mặt phẳng \[\left( P \right)\].

- Áp dụng công thức viết phương trình mặt phẳng \[\left( P \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[M\left( {{x_0};{y_0};{z_0}} \right)\] và có 1 VTPT \[\vec n\left( {A;B;C} \right)\] có phương trình là \[A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\].

Giải chi tiết:

Trục \[Oz\] có 1 VTCP là \[\vec k = \left( {0;0;1} \right)\].

Ta có: \[\overrightarrow {OM} = \left( { - 1;1; - 1} \right) \Rightarrow \left[ {\vec k;\overrightarrow {OM} } \right] = \left( { - 1; - 1;0} \right)\].

Gọi \(\vec n\) là 1 VTCP của mặt phẳng \(\left( P \right)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{Oz \subset \left( P \right)}\\{M \in \left( P \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\vec n \bot \vec k}\\{\vec n \bot \overrightarrow {OM} }\end{array}} \right. \Rightarrow \vec n = - \left[ {\vec k;\overrightarrow {OM} } \right] = \left( {1;1;0} \right)\).

Vậy mặt phẳng \(\left( P \right)\) có phương trình là \(1.\left( {x - 0} \right) + 1.\left( {y - 0} \right) + 0.\left( {z - 0} \right) = 0 \Leftrightarrow x + y = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).

Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).

Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)

\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).

Giải chi tiết:

Ta có : \(y' = {x^2} + 4mx + 8\)

Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)

\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)

\(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).

Vậy có 3 giá trị thỏa mãn.

Lời giải

Đáp án B

Phương pháp giải:

Gọi x là số mol KAl(SO4)2.12H2O kết tinh.

Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.

Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.

Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]

→ mKAl(SO4)2.12H2O.

Giải chi tiết:

Gọi x là số mol KAl(SO4)2.12H2O kết tinh.

Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.

Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.

Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]

→ x = 0,048.

→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP