Khi kí hợp đồng lao động dài hạn với các kĩ sư được tuyển dụng, công ti liên doanh A đề xuất 2 phương án trả lương để người lao động tự lựa chọn, cụ thể:
+ Phương án 1: Người lao động nhận được 360 triệu đồng cho năm làm việc đầu tiên, và kể từ năm thứ 2 trở đi, mức lương sẽ tăng thêm 30 triệu đồng mỗi năm.
+ Phương án 2: Người lao động nhận được 70 triệu đồng cho quý làm việc đầu tiên, và kể từ quý thứ 2 trở đi, mức lương sẽ tăng thêm 5 triệu đồng mỗi quý.
Nếu em là người kí hợp đồng lao động em sẽ chọn phương án nào?
Khi kí hợp đồng lao động dài hạn với các kĩ sư được tuyển dụng, công ti liên doanh A đề xuất 2 phương án trả lương để người lao động tự lựa chọn, cụ thể:
+ Phương án 1: Người lao động nhận được 360 triệu đồng cho năm làm việc đầu tiên, và kể từ năm thứ 2 trở đi, mức lương sẽ tăng thêm 30 triệu đồng mỗi năm.
+ Phương án 2: Người lao động nhận được 70 triệu đồng cho quý làm việc đầu tiên, và kể từ quý thứ 2 trở đi, mức lương sẽ tăng thêm 5 triệu đồng mỗi quý.
Nếu em là người kí hợp đồng lao động em sẽ chọn phương án nào?
Quảng cáo
Trả lời:
Tính tổng lương trong 10 năm.
+ Theo phương án 1:
+ Theo phương án 2:
1 năm có 4 quý năm có 40 quý.
Vậy chọn phương án 2.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp giải:
Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).
Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)
\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).
Giải chi tiết:
Ta có : \(y' = {x^2} + 4mx + 8\)
Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)
\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)
Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).
Vậy có 3 giá trị thỏa mãn.
Lời giải
Đáp án B
Phương pháp giải:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]
→ mKAl(SO4)2.12H2O.
Giải chi tiết:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]
→ x = 0,048.
→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.