Câu hỏi:

28/06/2022 3,693 Lưu

Một tủ sách có 7 cuốn sách Toán, 6 cuốn sách Lý và 5 cuốn sách Hóa. Các cuốn sách là khác nhau. Một học sinh chọn ngẫu nhiên 4 cuốn sách trong tủ để học, tính xác suất để 4 cuốn sách được chọn có ít nhất 2 cuốn sách Toán.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(\frac{{35}}{{68}}\)

Phương pháp giải:

Tính không gian mẫu.

Gọi A là biến cố: “4 cuốn sách được chọn có ít nhất 2 cuốn sách Toán”.

Xét các TH:

TH1: 2 cuốn sách Toán + 2 cuốn sách Lý & Hóa.

TH2: 3 cuốn sách Toán + 1 cuốn sách Lý & Hóa.

TH3: 4 cuốn sách Toán.

Tính số phần tử của biến cố A và tính xác suất của biến cố A.

Giải chi tiết:

Chọn ngẫu nhiên 4 quyển sách khác nhau từ 18 cuốn sách có \(C_{18}^4\) cách

\( \Rightarrow n\left( \Omega \right) = C_{18}^4\)

Gọi A là biến cố: “4 cuốn sách được chọn có ít nhất 2 cuốn sách Toán”.

TH1: 2 cuốn sách Toán + 2 cuốn sách Lý & Hóa.

\( \Rightarrow \) Có \(C_7^2.C_{11}^2\) cách.

TH2: 3 cuốn sách Toán + 1 cuốn sách Lý & Hóa.

\( \Rightarrow \)\(C_7^3.C_{11}^1\) cách.

TH3: 4 cuốn sách Toán.

\( \Rightarrow \)\(C_7^4\) cách.

\( \Rightarrow n\left( A \right) = C_7^2.C_{11}^2 + C_7^3.C_{11}^1 + C_7^4\)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_7^2.C_{11}^2 + C_7^3.C_{11}^1 + C_7^4}}{{C_{18}^4}} = \frac{{35}}{{68}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).

Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).

Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)

\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).

Giải chi tiết:

Ta có : \(y' = {x^2} + 4mx + 8\)

Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)

\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)

\(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).

Vậy có 3 giá trị thỏa mãn.

Lời giải

Đáp án B

Phương pháp giải:

Gọi x là số mol KAl(SO4)2.12H2O kết tinh.

Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.

Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.

Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]

→ mKAl(SO4)2.12H2O.

Giải chi tiết:

Gọi x là số mol KAl(SO4)2.12H2O kết tinh.

Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.

Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.

Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]

→ x = 0,048.

→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP