Câu hỏi:

28/06/2022 193 Lưu

Cho hàm số y = f(x) liên tục và có đạo hàm trên . Hàm số y = f'(x) có bảng xét dấu như bảng bên dưới.

Cho hàm số y = f(x) liên tục và có đạo hàm trên R. Hàm số y = f'(x) có bảng (ảnh 1)

Bất phương trình fx>ecosx+m có nghiệm x0;π2 khi và chỉ khi

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

fx>ecosx+m có nghiệm x0;π2

fxecosxm có nghiệm x0;π2

Đặt gx=fxecosxgxm có nghiệm x0;π2

mmin0;π2gx.

 

Xét hàm số gx=fxecosx với x0;π2 ta có: g'x=f'x+sinx.ecosx.

Với x0;π2 ta có sinx0;1sinx0;1sinx.ecosx>0 x0;π2.

Do đó g'x>0 x0;π2, do đó hàm số đồng biến trên 0;π2.

min0;π2gx=g0=f0e.


Vậy mf0e.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện ABCD có AD vuông góc (ABC), AC = AD = 2, AB = 1 (ảnh 1)

Trong (ABC) kẻ AHBCHBC, trong (ADH) kẻ AKDHKDH, ta có:

BCAHBCADADABCBCADHBCAK

AKDHAKBCAKBCDdA;BCD=AH

 

Xét tam giác ABC ta có AB2+AC2=12+22=5=BC2ΔABC vuông tại A (định lí Pytago đảo).

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có AH=AB.ACBC=1.25=25.

Áp dụng hệ thức lượng trong tam giác vuông ADH ta có AK=AD.AHAD2+AH2=2.254+45=63.

Vậy d=dA;BCD=63.

Chọn A.

Câu 2

Lời giải

Đồ thị có nhánh cuối đi xuống nên a<0 Loại đáp án D.

Đồ thị cắt trục tung tại điểm nằm trên trục hoành d>0.

Đồ thị có 2 điểm cực trị x1=0x2>0 nên phương trình y'=3ax2+2bx+c=0 có 2 nghiệm phân biệt thỏa mãn

x1=0x2>0x1+x2>0x1x2=02b3a>0c3a=0b>0c=0.

 

Vậy a<0,b>0,c=0,d>0.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP