Câu hỏi:

28/06/2022 650 Lưu

Cho hàm số y = f(x) liên tục trên  và có đồ thị f'(x) như hình vẽ bên. Bất phương trình log5fx+m+2+fx>4m đúng với mọi x1;4 khi và chỉ khi:

Cho hàm số y = f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên. Bất phương (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

     log5fx+m+2+fx>4m

log9fx+m+2+fx+m+2>6

Đặt t=fx+m+2, bất phương trình trở thành log5t+t>6t>0.

Xét hàm số gt=log5t+tt>0 ta có g't=1tln5+1>0 t>0, do đó hàm số đồng biến trên 0;+.

Lại có g5=log55+5=6 nên ta có gt>g5t>5.

Khi đó ta có fx+m+2>5fx>3m có nghiệm với mọi x1;43mmin1;4fx.

Dựa vào đồ thị hàm số y = f'(x) ta có BBT như sau:

Cho hàm số y = f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên. Bất phương (ảnh 2)

Ta cần so sánh f(-1) và f(4)

Ta có:

11f'xdx<14f'xdx

f1f1<f4+f1

f1>f4

Do đó min1;4fx=f4.

Vậy 3mf4m3f4.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện ABCD có AD vuông góc (ABC), AC = AD = 2, AB = 1 (ảnh 1)

Trong (ABC) kẻ AHBCHBC, trong (ADH) kẻ AKDHKDH, ta có:

BCAHBCADADABCBCADHBCAK

AKDHAKBCAKBCDdA;BCD=AH

 

Xét tam giác ABC ta có AB2+AC2=12+22=5=BC2ΔABC vuông tại A (định lí Pytago đảo).

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có AH=AB.ACBC=1.25=25.

Áp dụng hệ thức lượng trong tam giác vuông ADH ta có AK=AD.AHAD2+AH2=2.254+45=63.

Vậy d=dA;BCD=63.

Chọn A.

Câu 2

Lời giải

Đồ thị có nhánh cuối đi xuống nên a<0 Loại đáp án D.

Đồ thị cắt trục tung tại điểm nằm trên trục hoành d>0.

Đồ thị có 2 điểm cực trị x1=0x2>0 nên phương trình y'=3ax2+2bx+c=0 có 2 nghiệm phân biệt thỏa mãn

x1=0x2>0x1+x2>0x1x2=02b3a>0c3a=0b>0c=0.

 

Vậy a<0,b>0,c=0,d>0.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP