Một hình nón đỉnh S, đáy là hình tròn tâm O, góc ở đỉnh bằng 120°. Trên đường tròn đáy lấy một điểm A cố định và điểm M di động. Có bao nhiêu vị trí của M để diện tích tam giác SAM đạt giá trị lớn nhất?
Câu hỏi trong đề: Đề kiểm tra Học kì 1 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:

Gọi H là hình chiếu vuông góc của M lên SA.
Ta có, diện tích ΔSAM được cho bởi:
.
Do đó, diện tích ΔSAM đạt giá trị lớn nhất khi:
MH đạt giá trị lớn nhất ⇔ MH = MS
.
Tức M là giao điểm của đường tròn đáy hình nón với mặt phẳng (P) qua S và vuông góc với SA.
Từ giả thiết suy ra tồn tại điểm M trên đường tròn đáy thỏa mãn yêu cầu đề bài.Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A.
Dựa vào đồ thị hàm số , ta có nhận xét sau
* Đồ thị hình chữ N ngược nên hệ số a < 0
* Ta có
Đồ thị hàm số đi qua hai điểm cực trị có hoành độ trái dấu nhau nên
* Dễ thấy và đồ thị hàm số cắt Ox tại ba điểm phân biệt nên d < 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



