Hình bên vẽ đồ thị các hàm số \(f\left( x \right) = - {x^2} - 2x + 1\) và \[g\left( x \right) = - \frac{1}{2}{x^3} - \frac{5}{2}{x^2} - \frac{3}{2}x + \frac{5}{2}\]. Diện tích phần gạch chép trong hình bằng

B. \[\int\limits_{ - 3}^{ - 1} {\left[ {g\left( x \right) - f\left( x \right)} \right]} {\mkern 1mu} dx + \int\limits_{ - 1}^1 {\left[ {f\left( x \right) - g\left( x \right)} \right]} {\mkern 1mu} dx\]
D. \[\int\limits_{ - 3}^{ - 1} {\left[ {g\left( x \right) - f\left( x \right)} \right]} {\mkern 1mu} dx + \int\limits_{ - 1}^1 {\left[ {g\left( x \right) - f\left( x \right)} \right]} {\mkern 1mu} dx\]
Quảng cáo
Trả lời:

Đáp án A
Phương pháp giải:
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số \[y = f(x),{\mkern 1mu} {\mkern 1mu} y = g(x)\], trục hoành và hai đường thẳng \[x = a;{\mkern 1mu} {\mkern 1mu} x = b\] được tính theo công thức : \[S = \int\limits_a^b {\left| {f(x) - g(x)} \right|dx} \].
Giải chi tiết:
Dựa vào đồ thị hàm số ta thấy: \(f\left( x \right) = g\left( x \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 3}\\{x = - 1}\\{x = 1}\end{array}} \right.\)
Diện tích phần gạch chép trong hình bằng: \(S = \int\limits_{ - 3}^1 {\left| {f\left( x \right) - g\left( x \right)} \right|} {\mkern 1mu} dx\)
\( = \int\limits_{ - 3}^{ - 1} {\left[ {f\left( x \right) - g\left( x \right)} \right]} {\mkern 1mu} dx + \int\limits_{ - 1}^1 {\left[ {g\left( x \right) - f\left( x \right)} \right]} {\mkern 1mu} dx\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(S = \frac{{937}}{{12}}\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm.
- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Giải chi tiết:
Xét phương trình hoành độ giao điểm:
\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)
Vậy diện tích của hình phẳng \(\left( H \right)\) là:
\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).
Câu 2
Lời giải
Đáp án D
Phương pháp giải:
- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.
- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).
Giải chi tiết:
Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).
Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)
\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)
Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. hệ thần kinh dạng lưới → hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống.
B. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống → hệ thần kinh dạng lưới.
C. hệ thần kinh dạng lưới → hệ thần kinh dạng ống → hệ thần kinh dạng chuỗi hạch.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \({x^2} + x + 2\ln \left| {x + 1} \right| + C\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
B. Hình ảnh đoàn quân với trang phục đặc trưng của người lính.
D. Thể hiện mối liên hệ giữa những người lính và rừng núi trong kháng chiến.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.