Câu hỏi:

01/07/2022 501 Lưu

Một que kem ốc quế gồm hai phần : phần kem có dạng hình cầu, phần ốc quế có dạng hình nón. Giả sử hình cầu và hình nón cùng có bán kính bằng \(3{\mkern 1mu} cm,\) chiều cao hình nón là \(9cm.\) Thể tích của que kem (bao gồm cả phần không gian bên trong ốc quế không chứa kem) có giá trị bằng:

Một que kem ốc quế gồm hai phần : phần kem có dạng hình cầu (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp giải:

Công thức tính thể tích của khối nón có bán kính đáy R  và chiều cao h  là: \(V = \frac{1}{3}\pi {R^2}h.\)

Công thức tính thể của khối cầu có bán kính R  là: \(V = \frac{4}{3}\pi {R^3}.\)

Giải chi tiết:

Ta có thể tích của phần kem là: \({V_1} = \frac{1}{2}.\frac{4}{3}.\pi {R^3}\)\( = \frac{2}{3}\pi {.3^3} = 18\pi {\mkern 1mu} {\mkern 1mu} c{m^3}.\)

Thể tích của phần ốc quế bên dưới là: \({V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.3^2}.9 = 27\pi {\mkern 1mu} {\mkern 1mu} c{m^3}.\)

Vậy \(V = {V_1} + {V_2} = 18\pi + 27\pi = 45\pi {\mkern 1mu} {\mkern 1mu} c{m^3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP