Câu hỏi:

01/07/2022 253 Lưu

Cho tứ diện \[ABCD\]\(AB,{\mkern 1mu} {\mkern 1mu} AC,{\mkern 1mu} {\mkern 1mu} AD\) đôi một vuông góc với \(AB = 6a\), \(AC = 9a\), \(AD = 3a\). Gọi \(M,{\mkern 1mu} {\mkern 1mu} N,{\mkern 1mu} {\mkern 1mu} P\) lần lượt là trọng tâm các tam giác \(ABC,{\mkern 1mu} {\mkern 1mu} ACD,{\mkern 1mu} {\mkern 1mu} ADB\). Thể tích của khối tứ diện \(AMNP\) bằng:

A. \(2{a^3}\)
B. \(4{a^3}\)
C. \(6{a^3}\)

D. \(8{a^3}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp giải:

- Gọi \({M_1},{\mkern 1mu} {\mkern 1mu} {N_1},{\mkern 1mu} {\mkern 1mu} {P_1}\) lần lượt là trung điểm của \(BC,{\mkern 1mu} {\mkern 1mu} CD,{\mkern 1mu} {\mkern 1mu} BD\), sử dụng công thức tỉ lệ thể tích Simpson, so sánh \({V_{AMNP}}\)\({V_{A{M_1}{N_1}{P_1}}}\).

- Tiếp tục so sánh thể tích hai khối chóp có cùng chiều cao \(A.{M_1}{N_1}{P_1}\)\(A.BCD\), sử dụng tam giác đồng dạng để suy ra tỉ số diện tích hai đáy.

- Tính thể tích khối tứ diện \(ABCD\)\({V_{ABCD}} = \frac{1}{6}AB.AC.AD\), từ đó tính được \({V_{AMNP}}\).

Giải chi tiết:

Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với AB = 6a (ảnh 1)

Gọi \({M_1},{\mkern 1mu} {\mkern 1mu} {N_1},{\mkern 1mu} {\mkern 1mu} {P_1}\) lần lượt là trung điểm của \(BC,{\mkern 1mu} {\mkern 1mu} CD,{\mkern 1mu} {\mkern 1mu} BD\), ta có:

\(\frac{{AM}}{{A{M_1}}} = \frac{{AN}}{{A{N_1}}} = \frac{{AP}}{{A{P_1}}} = \frac{2}{3}\)

Khi đó \(\frac{{{V_{AMNP}}}}{{{V_{A{M_1}{N_1}{P_1}}}}} = \frac{{AM}}{{A{M_1}}}.\frac{{AN}}{{A{N_1}}}.\frac{{AP}}{{A{P_1}}} = \frac{8}{{27}}\)

Dễ thấy \[\Delta {M_1}{N_1}{P_1}\] đồng dạng với tam giác \[DBC\] theo tỉ số \[k = \frac{1}{2}\] nên \[\frac{{{S_{{M_1}{N_1}{P_1}}}}}{{{S_{DBC}}}} = \frac{1}{4}\].

Mà hai khối chóp \[A.{M_1}{N_1}{P_1}\]\[A.BCD\] cùng chiều cao nên \(\frac{{{V_{A.{M_1}{N_1}{P_1}}}}}{{{V_{ABCD}}}} = \frac{{{S_{{M_1}{N_1}{P_1}}}}}{{{S_{DBC}}}} = \frac{1}{4}\).

Lại có \({V_{ABCD}} = \frac{1}{6}AB.AC.AD = \frac{1}{6}.6a.9a.3a = 27{a^3}\).

\( \Rightarrow {V_{A.{M_1}{N_1}{P_1}}} = \frac{1}{4}{V_{ABCD}} = \frac{{27{a^3}}}{4}\)

Vậy \({V_{AMNP}} = \frac{8}{{27}}{V_{A{M_1}{N_1}{P_1}}} = \frac{8}{{27}}.\frac{{27{a^3}}}{4} = 2{a^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 5

A. hệ thần kinh dạng lưới → hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống.

B. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống → hệ thần kinh dạng lưới.

C. hệ thần kinh dạng lưới → hệ thần kinh dạng ống → hệ thần kinh dạng chuỗi hạch.

D. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng lưới → hệ thần kinh dạng ống.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^2}}}{2} + x - 2\ln \left| {x + 1} \right| + C\)
B. \(\frac{{{x^2}}}{2} + x - \frac{1}{{{{\left( {x + 1} \right)}^2}}} + C\)
C. \(\frac{{{x^2}}}{2} + x + 2\ln \left| {x + 1} \right| + C\)

D. \({x^2} + x + 2\ln \left| {x + 1} \right| + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Người lính bị sốt rét gương mặt xanh xao như màu lá cây.

B. Hình ảnh đoàn quân với trang phục đặc trưng của người lính.       

C. Hình ảnh màu xanh là ẩn dụ cho niềm tin và tinh thần chiến đấu của những người lính Tây Tiến.

D. Thể hiện mối liên hệ giữa những người lính và rừng núi trong kháng chiến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP