Tính giá trị biểu thức \(T = {\left| {{z_1} - {z_2}} \right|^2}\), biết \({z_1},{z_2}\) là các số phức thỏa mãn đồng thời \(\left| z \right| = 5\) và \(\left| {z - \left( {7 + 7i} \right)} \right| = 5\).
Tính giá trị biểu thức \(T = {\left| {{z_1} - {z_2}} \right|^2}\), biết \({z_1},{z_2}\) là các số phức thỏa mãn đồng thời \(\left| z \right| = 5\) và \(\left| {z - \left( {7 + 7i} \right)} \right| = 5\).
Quảng cáo
Trả lời:
Đáp án: 2
Phương pháp giải:
- Đặt \(z = a + bi\), thay vào các điều kiện bài cho lập hệ phương trình ẩn \(x,y\).
- Giải hệ phương trình tìm \(x,y \Rightarrow z\).
Giải chi tiết:
Đặt \(z = a + bi\) ta có:
\(\left\{ {\begin{array}{*{20}{l}}{\left| z \right| = 5}\\{\left| {z - \left( {7 + 7i} \right)} \right| = 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} + {b^2} = 25}\\{{{\left( {a - 7} \right)}^2} + {{\left( {b - 7} \right)}^2} = 25}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} + {b^2} = 25}\\{{a^2} + {b^2} - 14a - 14b + 98 = 25}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} + {b^2} = 25}\\{a + b = 7}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 7 - a}\\{{a^2} + {{\left( {7 - a} \right)}^2} = 25}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 7 - a}\\{2{a^2} - 14a + 24 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 4,b = 3}\\{a = 3,b = 4}\end{array}} \right.\)
\( \Rightarrow \) hai số phức cần tìm là \(4 + 3i,3 + 4i \Rightarrow T = {\left| {{z_1} - {z_2}} \right|^2} = {\left| {\left( {4 + 3i} \right) - \left( {3 + 4i} \right)} \right|^2} = {\left| {1 - i} \right|^2} = 2\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(S = \frac{{937}}{{12}}\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm.
- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Giải chi tiết:
Xét phương trình hoành độ giao điểm:
\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)
Vậy diện tích của hình phẳng \(\left( H \right)\) là:
\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).
Lời giải
Đáp án D
Phương pháp giải:
- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.
- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).
Giải chi tiết:
Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).
Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)
\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)
Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.