Câu hỏi:

12/07/2024 247

Xét các số thực dương ab thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \(P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\)bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: 4

Giải chi tiết:

ĐKXĐ: \(\left\{ {\begin{array}{*{20}{l}}{b - a > 0}\\{a,{\mkern 1mu} {\mkern 1mu} b > 0}\end{array}} \right.\).

Ta có: \({\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\)

\( \Leftrightarrow {\log _3}\left( {1 + ab} \right) - {\log _3}\left( {b - a} \right) = \frac{1}{2}\)

\( \Leftrightarrow {\log _3}\frac{{1 + ab}}{{b - a}} = \frac{1}{2}\)

\( \Leftrightarrow \frac{{1 + ab}}{{b - a}} = \sqrt 3 \)

\( \Leftrightarrow 1 + ab = \sqrt 3 \left( {b - a} \right)\)

\( \Leftrightarrow \frac{1}{a} + b = \sqrt 3 \left( {\frac{b}{a} - 1} \right)\).

Áp dụng BĐT Cô-si ta có \(\frac{1}{a} + b \ge 2\sqrt {\frac{b}{a}} \) nên

\(\sqrt 3 \left( {\frac{b}{a} - 1} \right) \ge 2\sqrt {\frac{b}{a}} \Leftrightarrow \sqrt 3 \frac{b}{a} - 2\sqrt {\frac{b}{a}} - \sqrt 3 \ge 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sqrt {\frac{b}{a}} \ge \sqrt 3 }\\{\sqrt {\frac{b}{a}} \le - \frac{1}{{\sqrt 3 }}{\mkern 1mu} {\mkern 1mu} \left( {Loai} \right)}\end{array}} \right. \Leftrightarrow \sqrt {\frac{b}{a}} \ge \sqrt 3 \Leftrightarrow \frac{b}{a} \ge 3\)

Ta có: \(P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}} = \frac{{1 + {a^2} + {b^2} + {a^2}{b^2}}}{{a\left( {a + b} \right)}}\)

Áp dụng BĐT Cô-si ta có \(1 + {a^2}{b^2} \ge 2\sqrt {{a^2}{b^2}} = 2ab\) nên

\(1 + {a^2} + {b^2} + {a^2}{b^2} \ge {a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}\)

\( \Rightarrow P = \frac{{1 + {a^2} + {b^2} + {a^2}{b^2}}}{{a\left( {a + b} \right)}} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{a\left( {a + b} \right)}} = \frac{{a + b}}{a} = 1 + \frac{b}{a} \ge 4\)

Vậy \({P_{\min }} = 4 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{a} = b}\\{\frac{b}{a} = 3}\\{a,{\mkern 1mu} {\mkern 1mu} b > 0,{\mkern 1mu} {\mkern 1mu} b - a > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{a} = 3a}\\{b = 3a}\\{a,{\mkern 1mu} {\mkern 1mu} b > 0,{\mkern 1mu} {\mkern 1mu} b - a > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{{\sqrt 3 }}}\\{b = \sqrt 3 }\end{array}} \right.\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 5

Chiều hướng tiến hóa về tổ chức thần kinh ở động vật theo trình tự là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Họ nguyên hàm \(\int {\frac{{{x^2} + 2x + 3}}{{x + 1}}dx} \) bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay