Câu hỏi:

19/08/2025 332 Lưu

Cho tứ diện \(OABC\) có ba cạnh \(OA,{\mkern 1mu} {\mkern 1mu} OB,{\mkern 1mu} {\mkern 1mu} OC\) đôi một vuông góc với nhau. Biết khoảng cách từ điểm \(O\) đến các đường thẳng \(BC,{\mkern 1mu} {\mkern 1mu} CA,{\mkern 1mu} {\mkern 1mu} AB\) lần lượt là \(a,{\mkern 1mu} {\mkern 1mu} a\sqrt 2 ,{\mkern 1mu} {\mkern 1mu} a\sqrt 3 \). Tính khoảng cách từ điểm \(O\) đến mặt phẳng \(\left( {ABC} \right)\) theo a.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(\frac{{2a\sqrt {33} }}{{11}}\)

Phương pháp giải:

- Kẻ \(OM \bot AC{\mkern 1mu} {\mkern 1mu} \left( {M \in AC} \right)\), \(ON \bot AB{\mkern 1mu} {\mkern 1mu} \left( {N \in AB} \right)\), \(OP \bot BC{\mkern 1mu} {\mkern 1mu} \left( {P \in BC} \right)\). Khi đó ta có \(OP = a,\) \(OM = a\sqrt 2 ,\) \(ON = a\sqrt 3 \).

- Trong \[\left( {OCN} \right)\] kẻ \[OH \bot CN{\mkern 1mu} {\mkern 1mu} \left( {H \in CN} \right)\], chứng minh \[OH \bot \left( {ABC} \right)\].

- Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết:

Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau (ảnh 1)

Kẻ \(OM \bot AC{\mkern 1mu} {\mkern 1mu} \left( {M \in AC} \right)\), \(ON \bot AB{\mkern 1mu} {\mkern 1mu} \left( {N \in AB} \right)\), \(OP \bot BC{\mkern 1mu} {\mkern 1mu} \left( {P \in BC} \right)\)

Khi đó ta có \[OP = a,{\mkern 1mu} {\mkern 1mu} OM = a\sqrt 2 ,{\mkern 1mu} {\mkern 1mu} ON = a\sqrt 3 \]

Trong \(\left( {OCN} \right)\) kẻ \(OH \bot CN{\mkern 1mu} {\mkern 1mu} \left( {H \in CN} \right)\) ta có:

\(\left\{ {\begin{array}{*{20}{l}}{AB \bot ON}\\{AB \bot OC}\end{array}} \right. \Rightarrow AB \bot \left( {OCN} \right) \Rightarrow AB \bot OH\)

\(\left\{ {\begin{array}{*{20}{l}}{OH \bot AB}\\{OH \bot CN}\end{array}} \right. \Rightarrow OH \bot \left( {ABC} \right) \Rightarrow d\left( {O;\left( {ABC} \right)} \right) = OH\)

Áp dụng hệ thức lượng trong tam giác vuông ta có:

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{N^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)

Lại có: \(\frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{C^2}}};{\mkern 1mu} {\mkern 1mu} \frac{1}{{O{N^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}};{\mkern 1mu} {\mkern 1mu} \frac{1}{{O{P^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)

\( \Rightarrow \frac{1}{{O{M^2}}} + \frac{1}{{O{N^2}}} + \frac{1}{{O{P^2}}} = 2\left( {\frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}} \right)\)

\( \Rightarrow \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{2}\left( {\frac{1}{{O{M^2}}} + \frac{1}{{O{N^2}}} + \frac{1}{{O{P^2}}}} \right)\)

\( \Rightarrow \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{2}\left( {\frac{1}{{2{a^2}}} + \frac{1}{{3{a^2}}} + \frac{1}{{{a^2}}}} \right) = \frac{{11}}{{12{a^2}}}\)

\( \Rightarrow \frac{1}{{O{H^2}}} = \frac{{11}}{{12{a^2}}} \Rightarrow OH = \frac{{2a\sqrt {33} }}{{11}}\)

Vậy \(d\left( {O;\left( {ABC} \right)} \right) = \frac{{2a\sqrt {33} }}{{11}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 5

A. hệ thần kinh dạng lưới → hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống.

B. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống → hệ thần kinh dạng lưới.

C. hệ thần kinh dạng lưới → hệ thần kinh dạng ống → hệ thần kinh dạng chuỗi hạch.

D. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng lưới → hệ thần kinh dạng ống.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^2}}}{2} + x - 2\ln \left| {x + 1} \right| + C\)
B. \(\frac{{{x^2}}}{2} + x - \frac{1}{{{{\left( {x + 1} \right)}^2}}} + C\)
C. \(\frac{{{x^2}}}{2} + x + 2\ln \left| {x + 1} \right| + C\)

D. \({x^2} + x + 2\ln \left| {x + 1} \right| + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Người lính bị sốt rét gương mặt xanh xao như màu lá cây.

B. Hình ảnh đoàn quân với trang phục đặc trưng của người lính.       

C. Hình ảnh màu xanh là ẩn dụ cho niềm tin và tinh thần chiến đấu của những người lính Tây Tiến.

D. Thể hiện mối liên hệ giữa những người lính và rừng núi trong kháng chiến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP