Câu hỏi:

01/07/2022 245 Lưu

Một người nhìn thấy con cá ở trong nước. Hỏi muốn đâm trúng con cá thì người đó phải phóng mũi lao vào chỗ nào?

A. Đúng vào chỗ người đó nhìn thấy con cá.
B. Ở phía trên chỗ người đó nhìn thấy con cá
C. Ở phía dưới chỗ người đó nhìn thấy con cá

D. Cả A , B, C đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp giải:

Định luật khúc xạ ánh sáng: \({n_1}\sin i = {n_2}\sin r\).

Giải chi tiết:

Gọi O là vị trí của con cá trong nước.

Do hiện tượng khúc xạ và do chiết suất của nước lớn hơn chiết suất của không khí nên ảnh của con cá sẽ ở vị trí O’ như hình vẽ.

Một người nhìn thấy con cá ở trong nước. Hỏi muốn đâm trúng con cá thì  (ảnh 1)

Như vậy, người đó nhìn thấy con cá dường như gần mặt nước hơn. Để đâm trúng con cá thì người đó phải phóng mũi lao vào phía dưới vị trí mà người đó nhìn thấy con cá.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 5

A. hệ thần kinh dạng lưới → hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống.

B. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống → hệ thần kinh dạng lưới.

C. hệ thần kinh dạng lưới → hệ thần kinh dạng ống → hệ thần kinh dạng chuỗi hạch.

D. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng lưới → hệ thần kinh dạng ống.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^2}}}{2} + x - 2\ln \left| {x + 1} \right| + C\)
B. \(\frac{{{x^2}}}{2} + x - \frac{1}{{{{\left( {x + 1} \right)}^2}}} + C\)
C. \(\frac{{{x^2}}}{2} + x + 2\ln \left| {x + 1} \right| + C\)

D. \({x^2} + x + 2\ln \left| {x + 1} \right| + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Người lính bị sốt rét gương mặt xanh xao như màu lá cây.

B. Hình ảnh đoàn quân với trang phục đặc trưng của người lính.       

C. Hình ảnh màu xanh là ẩn dụ cho niềm tin và tinh thần chiến đấu của những người lính Tây Tiến.

D. Thể hiện mối liên hệ giữa những người lính và rừng núi trong kháng chiến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP