Câu hỏi:
01/07/2022 234Một con lắc đơn dao động với biên độ \({\alpha _0} < \frac{\pi }{2}\), có mốc thế năng được chọn tại vị trí cân bằng của vật nặng. Gọi độ lớn vận tốc của vật nặng khi động năng bằng thế năng là v1, khi độ lớn của lực căng dây treo bằng trọng lực tác động lên vật là v2 . Tỉ số \(\frac{{{v_1}}}{{{v_2}}}\) có giá trị nào sau đây?
Quảng cáo
Trả lời:
Đáp án D
Phương pháp giải:
Công thức tính độ lớn vận tốc và lực căng dây: \(\left\{ {\begin{array}{*{20}{l}}{v = \sqrt {2gl\left( {\cos \alpha - \cos {\alpha _0}} \right)} }\\{T = mg.\left( {3\cos \alpha - 2\cos {\alpha _0}} \right)}\end{array}} \right.\)
Công thức tính cơ năng, thế năng và động năng: \(\left\{ {\begin{array}{*{20}{l}}{{\rm{W}} = mgl.\left( {1 - \cos {\alpha _0}} \right)}\\{{{\rm{W}}_t} = mgl.\left( {1 - \cos \alpha } \right)}\\{{{\rm{W}}_d} = {\rm{W}} - {{\rm{W}}_t}}\end{array}} \right.\)
Theo bài ra ta có: \(\left\{ {\begin{array}{*{20}{l}}{{{\rm{W}}_t} = {{\rm{W}}_d} \Rightarrow {v_1}}\\{T = P \Rightarrow {v_2}}\end{array}} \right. \Rightarrow \frac{{{v_1}}}{{{v_2}}}\).
Giải chi tiết:
+ Khi động năng bằng thế năng: \[{{\rm{W}}_t} = {\rm{W}} - {{\rm{W}}_t}\]
\[ \Leftrightarrow mgl.\left( {1 - \cos {\alpha _1}} \right) = mgl.\left( {1 - \cos {\alpha _0}} \right) - mgl.\left( {1 - \cos {\alpha _1}} \right)\]
\[ \Leftrightarrow 1 - \cos {\alpha _1} = \cos {\alpha _1} - \cos {\alpha _0}\]
\[ \Leftrightarrow \cos {\alpha _1} = \frac{1}{2} + \frac{1}{2}.\cos {\alpha _0}\]
+ Khi độ lớn của lực căng dây treo bằng trọng lực tác động lên vật:
\[mg.\left( {3\cos {\alpha _2} - 2\cos {\alpha _0}} \right) = mg\]
\[ \Leftrightarrow 3\cos {\alpha _2} - 2\cos {\alpha _0} = 1 \Leftrightarrow \cos {\alpha _2} = \frac{1}{3} + \frac{2}{3}.\cos {\alpha _0}\]
+ Suy ra: \[\frac{{{v_1}}}{{{v_2}}} = \frac{{\sqrt {2gl\left( {\cos {\alpha _1} - \cos {\alpha _0}} \right)} }}{{\sqrt {2gl\left( {\cos {\alpha _2} - \cos {\alpha _0}} \right)} }} = \sqrt {\frac{{\cos {\alpha _1} - \cos {\alpha _0}}}{{\cos {\alpha _2} - \cos {\alpha _0}}}} \]
\[ = \sqrt {\frac{{\frac{1}{2} + \frac{1}{2}.\cos {\alpha _0} - \cos {\alpha _0}}}{{\frac{1}{3} + \frac{2}{3}.\cos {\alpha _0} - \cos {\alpha _0}}}} = \sqrt {\frac{{\frac{1}{2}\left( {1 - \cos {\alpha _0}} \right)}}{{\frac{1}{3}\left( {1 - \cos {\alpha _0}} \right)}}} = \sqrt {\frac{3}{2}} \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(S = \frac{{937}}{{12}}\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm.
- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Giải chi tiết:
Xét phương trình hoành độ giao điểm:
\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)
Vậy diện tích của hình phẳng \(\left( H \right)\) là:
\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).
Lời giải
Đáp án D
Phương pháp giải:
- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.
- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).
Giải chi tiết:
Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).
Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)
\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)
Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)