Câu hỏi:
01/07/2022 213Một học sinh làm thí nghiệm đo bước sóng ánh sáng bằng thí nghiệm khe Y-âng. Trong khi tiến hành, học sinh này đo được khoảng cách hai khe sáng là \(1,00 \pm 0,05\left( {mm} \right)\); khoảng cách từ mặt phẳng chứa hai khe đến màn đo được là \(2000 \pm 1,54\left( {mm} \right)\); khoảng cách 10 vân sáng liên tiếp đo được là \(10,80 \pm 0,14\left( {mm} \right)\). Sai số tuyệt đối của quá trình đo bước sóng là
Quảng cáo
Trả lời:
Đáp án B
Phương pháp giải:
Khoảng cách của 10 vân sáng liên tiếp: \(l = 9i\)
Bước sóng: \(\lambda = \frac{{ai}}{D}\)
Sai số tỉ đối: \(\frac{{\Delta \lambda }}{{\bar \lambda }} = \frac{{\Delta a}}{{\bar a}} + \frac{{\Delta i}}{{\bar i}} + \frac{{\Delta D}}{{\bar D}}\)
Sai số tuyệt đối: \(\Delta \lambda = \bar \lambda \left( {\frac{{\Delta a}}{{\bar a}} + \frac{{\Delta i}}{{\bar i}} + \frac{{\Delta D}}{{\bar D}}} \right)\)
Giải chi tiết:
Khoảng cách giữa 10 vân sáng liên tiếp là:
\(l = 9i \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\bar i = \frac{{\bar l}}{9} = 1,2{\mkern 1mu} {\mkern 1mu} \left( {mm} \right)}\\{\Delta i = \frac{{\Delta l}}{9} = 0,016{\mkern 1mu} {\mkern 1mu} \left( {mm} \right)}\end{array}} \right.\)
Giá trị trung bình của bước sóng là:
\(\bar \lambda = \frac{{\bar a.\bar i}}{{\bar D}} = \frac{{{{1.10}^{ - 3}}.1,{{2.10}^{ - 3}}}}{2} = 0,{6.10^{ - 6}}{\mkern 1mu} {\mkern 1mu} \left( m \right) = 0,6{\mkern 1mu} {\mkern 1mu} \left( {\mu m} \right)\)
Sai số tỉ đối của phép đo là: \(\frac{{\Delta \lambda }}{{\bar \lambda }} = \frac{{\Delta a}}{{\bar a}} + \frac{{\Delta i}}{{\bar i}} + \frac{{\Delta D}}{{\bar D}}\)
\( \Rightarrow \frac{{\Delta \lambda }}{{0,6}} = \frac{{0,05}}{1} + \frac{{0,016}}{{1,2}} + \frac{{1,54}}{{2000}}\)
\( \Rightarrow \Delta \lambda \approx \pm 0,038{\mkern 1mu} {\mkern 1mu} \left( {\mu m} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(S = \frac{{937}}{{12}}\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm.
- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Giải chi tiết:
Xét phương trình hoành độ giao điểm:
\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)
Vậy diện tích của hình phẳng \(\left( H \right)\) là:
\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).
Lời giải
Đáp án D
Phương pháp giải:
- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.
- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).
Giải chi tiết:
Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).
Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)
\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)
Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)