Câu hỏi:

30/06/2022 492 Lưu

Tiến hành thí nghiệm theo các bước sau:

Bước 1: Cho vào hai bình cầu mỗi bình khoảng 6 ml metyl axetat.

Bước 2: Thêm khoảng 6 - 8 ml dung dịch H2SO4 loãng 25% vào bình thứ nhất, khoảng 12 ml dung dịch NaOH 35% vào bình thứ hai.

Bước 3: Lắc đều cả hai bình, lắp ống sinh hàn rồi đun sôi nhẹ trong khoảng thời gian 5 - 8 phút, sau đó để nguội.

Phát biểu nào sau đây đúng?

A. Ở bước 3, trong hai bình đều xảy ra phản ứng xà phòng hóa.

B. Ở bước 3, có thể thay đun sôi nhẹ bằng ngâm ống nghiệm trong nước nóng.

C. Sau bước 2, cả hai bình đều tạo dung dịch đồng nhất.

D. Ở bước 3, vai trò của ống sinh hàn là tăng tốc độ phản ứng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp giải:

Dựa vào lý thuyết về phản ứng thủy phân este.

Giải chi tiết:

A sai, vì phản ứng thủy phân este trong MT axit không được gọi là phản ứng xà phòng hóa.

B đúng.

C sai, phản ứng thủy phân este trong MT axit là thuận nghịch nên luôn còn 1 lượng este dư do đó bình 1 không đồng nhất.

D sai, vai trò của ống sinh hàn là ngưng tụ este tránh thất thoát sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(S = \frac{{937}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Sử dụng công thức: Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), các đường thẳng \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\)\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Giải chi tiết:

Xét phương trình hoành độ giao điểm:

\( - {x^3} + 12x = - {x^2} \Leftrightarrow - {x^3} + {x^2} + 12x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4}\\{x = - 3}\end{array}} \right.\)

Vậy diện tích của hình phẳng \(\left( H \right)\) là:

\(\int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|} + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|} = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).

Lời giải

Đáp án D

Phương pháp giải:

- Tìm hàm số vận tốc: \(v\left( t \right) = \int {a\left( t \right)dt} \), sử dụng dữ kiện \(v\left( 0 \right) = 15\) để tìm C.

- Quãng đường đi được sau 10 giây là: \(S = \int\limits_0^{10} {v\left( t \right)dt} \).

Giải chi tiết:

Ta có \(v = \int {a\left( t \right)dt = \int {\left( {3t - 8} \right)dt} } = \frac{{3{t^2}}}{2} - 8t + C\).

Vì ô tô đang chạy với vận tốc 15m/s nên ta có: \(v\left( 0 \right) = 15 \Rightarrow C = 15.\)

\( \Rightarrow v = \frac{{3{t^2}}}{2} - 8t + 15.\)

Vậy quãng đường ô tô đi được sau 10 giây là: \(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} - 8t + 15} \right)dt = 250} \).

Câu 5

A. hệ thần kinh dạng lưới → hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống.

B. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng ống → hệ thần kinh dạng lưới.

C. hệ thần kinh dạng lưới → hệ thần kinh dạng ống → hệ thần kinh dạng chuỗi hạch.

D. hệ thần kinh dạng chuỗi hạch → hệ thần kinh dạng lưới → hệ thần kinh dạng ống.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^2}}}{2} + x - 2\ln \left| {x + 1} \right| + C\)
B. \(\frac{{{x^2}}}{2} + x - \frac{1}{{{{\left( {x + 1} \right)}^2}}} + C\)
C. \(\frac{{{x^2}}}{2} + x + 2\ln \left| {x + 1} \right| + C\)

D. \({x^2} + x + 2\ln \left| {x + 1} \right| + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Người lính bị sốt rét gương mặt xanh xao như màu lá cây.

B. Hình ảnh đoàn quân với trang phục đặc trưng của người lính.       

C. Hình ảnh màu xanh là ẩn dụ cho niềm tin và tinh thần chiến đấu của những người lính Tây Tiến.

D. Thể hiện mối liên hệ giữa những người lính và rừng núi trong kháng chiến.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP