Câu hỏi:
01/07/2022 8,915Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải:
- Tính đạo hàm \(y'\)
- Hàm số đồng biến trên \(\left( {1; + \infty } \right)\)\( \Leftrightarrow y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {1; + \infty } \right)\)
- Xét các TH sau:
+ TH1: \(\Delta ' \le 0\) \( \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}\)
+ TH2: \(\Delta ' > 0\), phương trình \(y' = 0\) có hai nghiệm phân biệt \({x_1} < {x_2}\). Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\)thì \({x_1} < {x_2} \le 1\)
- Áp dụng định lí Vi-ét.
Giải chi tiết:
Hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\) xác định trên \(\left( {1; + \infty } \right)\)
Ta có: \(y' = {x^2} - 2\left( {m - 1} \right)x + 3\left( {m - 1} \right)\)
Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\)\( \Leftrightarrow y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {1; + \infty } \right)\)
\( \Leftrightarrow {x^2} - 2\left( {m - 1} \right)x + 3\left( {m - 1} \right) \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {1; + \infty } \right)\) (*).
Ta có \(\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 1} \right) = {m^2} - 5m + 4\)
TH1: \(\Delta ' \le 0 \Leftrightarrow {m^2} - 5m + 4 \le 0 \Leftrightarrow 1 \le m \le 4\), khi đó \(y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\) nên thỏa mãn (*).
TH2: \(\Delta ' > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 4}\\{m < 1}\end{array}} \right.\), khi đó phương trình \(y' = 0\) có hai nghiệm phân biệt \({x_1} < {x_2}\).
Áp dụng định lí Vi-et ta có \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2\left( {m - 1} \right)}\\{{x_1}{x_2} = 3\left( {m - 1} \right)}\end{array}} \right.\)
Khi đó ta có \(y' \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \ge {x_2}}\\{x \le {x_1}}\end{array}} \right.\), nên hàm số đã cho đồng biến trên \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\)
Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) thì \(\left( {1; + \infty } \right) \subseteq \left( {{x_2}; + \infty } \right)\)\( \Rightarrow {x_1} < {x_2} \le 1\)
Khi đó ta có:
\(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} < 2}\\{\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} < 2}\\{{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {m - 1} \right) < 2}\\{3\left( {m - 1} \right) - 2\left( {m - 1} \right) + 1 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m - 1 < 1}\\{m - 1 + 1 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 2}\\{m \ge 0}\end{array}} \right. \Leftrightarrow 0 \le m < 2\)
Kết hợp 2 TH ta có \(0 \le m \le 4\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4} \right\}\).
Vậy có 5 giá trị của m thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(1,50{\mkern 1mu} {m^3}\)
Phương pháp giải:
- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)
- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).
- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).
Giải chi tiết:
Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).
Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)
\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)
Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:
Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).
Lời giải
Đáp án A
Phương pháp giải:
Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).
Giải chi tiết:
Phương thức biểu đạt tự sự.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận