Câu hỏi:
01/07/2022 6,207Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải:
- Tính đạo hàm \(y'\)
- Hàm số đồng biến trên \(\left( {1; + \infty } \right)\)\( \Leftrightarrow y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {1; + \infty } \right)\)
- Xét các TH sau:
+ TH1: \(\Delta ' \le 0\) \( \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}\)
+ TH2: \(\Delta ' > 0\), phương trình \(y' = 0\) có hai nghiệm phân biệt \({x_1} < {x_2}\). Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\)thì \({x_1} < {x_2} \le 1\)
- Áp dụng định lí Vi-ét.
Giải chi tiết:
Hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\) xác định trên \(\left( {1; + \infty } \right)\)
Ta có: \(y' = {x^2} - 2\left( {m - 1} \right)x + 3\left( {m - 1} \right)\)
Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\)\( \Leftrightarrow y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {1; + \infty } \right)\)
\( \Leftrightarrow {x^2} - 2\left( {m - 1} \right)x + 3\left( {m - 1} \right) \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {1; + \infty } \right)\) (*).
Ta có \(\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 1} \right) = {m^2} - 5m + 4\)
TH1: \(\Delta ' \le 0 \Leftrightarrow {m^2} - 5m + 4 \le 0 \Leftrightarrow 1 \le m \le 4\), khi đó \(y' \ge 0{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\) nên thỏa mãn (*).
TH2: \(\Delta ' > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 4}\\{m < 1}\end{array}} \right.\), khi đó phương trình \(y' = 0\) có hai nghiệm phân biệt \({x_1} < {x_2}\).
Áp dụng định lí Vi-et ta có \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2\left( {m - 1} \right)}\\{{x_1}{x_2} = 3\left( {m - 1} \right)}\end{array}} \right.\)
Khi đó ta có \(y' \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \ge {x_2}}\\{x \le {x_1}}\end{array}} \right.\), nên hàm số đã cho đồng biến trên \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\)
Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) thì \(\left( {1; + \infty } \right) \subseteq \left( {{x_2}; + \infty } \right)\)\( \Rightarrow {x_1} < {x_2} \le 1\)
Khi đó ta có:
\(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} < 2}\\{\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} < 2}\\{{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {m - 1} \right) < 2}\\{3\left( {m - 1} \right) - 2\left( {m - 1} \right) + 1 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m - 1 < 1}\\{m - 1 + 1 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 2}\\{m \ge 0}\end{array}} \right. \Leftrightarrow 0 \le m < 2\)
Kết hợp 2 TH ta có \(0 \le m \le 4\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4} \right\}\).
Vậy có 5 giá trị của m thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Câu 3:
Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?
Câu 6:
Litva sẽ tham gia vào cộng đồng chung châu Âu sử dụng đồng Euro là đồng tiền chung vào ngày 01 tháng 01 năm 2015. Để kỷ niệm thời khắc lịch sử chung này, chính quyền đất nước này quyết định dùng 122550 đồng tiền xu Litas Lithuania cũ của đất nước để xếp một mô hình kim tự tháp (như hình vẽ bên). Biết rằng tầng dưới cùng có 4901 đồng và cứ lên thêm một tầng thì số đồng xu giảm đi 100 đồng. Hỏi mô hình Kim tự tháp này có tất cả bao nhiêu tầng?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!