Câu hỏi:

13/07/2024 7,920

Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: 7

Giải chi tiết:

Nhận xét: \({x^2} + {y^2} - 2x + 2 = {\left( {x - 1} \right)^2} + {y^2} + 1 > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x,y\)

Bpt \( \Leftrightarrow {2^{{x^2} + {y^2} - 2x + 1}} \le {x^2} + {y^2} - 2x + 2\)

Đặt \(t = {x^2} + {y^2} - 2x + 1\), bất phương trình trở thành \({2^t} \le t + 1 \Leftrightarrow {2^t} - t - 1 \le 0\)

Xét hàm số \(f\left( t \right) = {2^t} - t - 1\) có \(f'\left( t \right) = {2^t}\ln 2 - 1 = 0 \Leftrightarrow t = {\log _2}\left( {{{\log }_2}e} \right).\)

BBT:

Xét các số thực x, y thỏa mãn 2^(x^2 + y^2 + 1) < = (x^2 + y^2 - 2x + 2)4^x (ảnh 1)

Suy ra ta có \(0 \le t \le 1 \Rightarrow {\left( {x - 1} \right)^2} + {y^2} \le 1\)

Ta có: \(P = \frac{{8x + 4}}{{2x - y + 1}}\)

\[ \Leftrightarrow 2Px - Py + P = 8x + 4\]

\[ \Leftrightarrow P - 4 = \left( {8 - 2P} \right)x + Py\]

\[ \Leftrightarrow 3P - 12 = \left( {8 - 2P} \right)\left( {x - 1} \right) + Py\]

\[ \Leftrightarrow {\left( {3P - 12} \right)^2} \le \left[ {{{\left( {8 - 2P} \right)}^2} + {P^2}} \right]\left[ {{{\left( {x - 1} \right)}^2} + {y^2}} \right]\]

\[ \Rightarrow {\left( {3P - 12} \right)^2} \le {\left( {8 - 2P} \right)^2} + {P^2}\]

\[ \Leftrightarrow 4{P^2} - 40P + 80 \le 0\]

\[ \Leftrightarrow 5 - \sqrt 5 \le P \le 5 + \sqrt 5 \approx 7,23\]

Dấu “=” xảy ra \[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{8 - 2P}}{P} = \frac{{x - 1}}{y} = - \frac{2}{{\sqrt 5 }}}\\{{{\left( {x - 1} \right)}^2} + {y^2} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 1 = - \frac{2}{{\sqrt 5 }}y}\\{\frac{9}{5}{y^2} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1 \mp \frac{2}{3}}\\{y = \pm \frac{{\sqrt 5 }}{3}}\end{array}} \right.\]

\[ \Rightarrow \max P = 5 + \sqrt 5 \] đạt được khi \[x = \frac{1}{3};y = \frac{{\sqrt 5 }}{3}\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

Phương thức biểu đạt chính trong đoạn trích là gì?

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Câu 3

Tây Nguyên hiện nay phát triển mạnh

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phát biểu nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay