Câu hỏi:

13/07/2024 246 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):{\mkern 1mu} {\mkern 1mu} 2x - y - 2z - 9 = 0\)\(\left( Q \right):{\mkern 1mu} 4x - 2y - 4z - 6 = 0\). Khoảng cách giữa hai mặt phẳng \(\left( P \right)\) \(\left( Q \right)\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: 2

Phương pháp giải:

- Nhận xét \(\left( P \right)\parallel \left( Q \right)\)

- \(d\left( {\left( P \right);\left( Q \right)} \right) = d\left( {M;\left( Q \right)} \right)\) với \(M \in \left( P \right)\) bất kì.

- Khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( Q \right):{\mkern 1mu} {\mkern 1mu} Ax + By + Cz + D = 0\) là

\(d\left( {M;\left( Q \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Giải chi tiết:

Vì \(\frac{2}{4} = \frac{{ - 1}}{{ - 2}} = \frac{{ - 2}}{{ - 4}} \ne \frac{{ - 9}}{{ - 6}}\) nên \(\left( P \right)\parallel \left( Q \right)\)

Xét \(\left( P \right)\), cho \(x = z = 0 \Rightarrow y = - 9 \Rightarrow M\left( {0; - 9;0} \right) \in \left( P \right)\)

Vậy \(d\left( {\left( P \right);\left( Q \right)} \right) = d\left( {M;\left( Q \right)} \right) = \frac{{\left| { - 2.\left( { - 9} \right) - 6} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 4} \right)}^2}} }} = 2\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP