Câu hỏi:

11/07/2024 255 Lưu

Với tất cả giá trị nào của \(m\) thì hàm số \(y = m{x^4} + \left( {m - 1} \right){x^2} + 1 - 2m\) chỉ có một cực trị

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(\left[ {\begin{array}{*{20}{l}}{m \le 0}\\{m \ge 1}\end{array}} \right.\)

Phương pháp giải:

- Tính đạo hàm.

- Giải phương trình \(y' = 0\)

- Đưa phương trình \(y' = 0\) về dạng tích, tìm điều kiện để phương trình \(y' = 0\) có 1 nghiệm duy nhất.

Giải chi tiết:

+ \(y' = 4m{x^3} + 2\left( {m - 1} \right)x = 2x\left( {2m{x^2} + m - 1} \right)\)

+ \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{2m{x^2} + m - 1 = 0{\mkern 1mu} {\mkern 1mu} \left( 1 \right)}\end{array}} \right.\)

+ Hàm số chỉ có 1 cực trị \( \Leftrightarrow \left( 1 \right)\) vô nghiệm hoặc có nghiệm kép \( \Rightarrow \Delta \le 0 \Leftrightarrow - 2m\left( {m - 1} \right) \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le 0}\\{m \ge 1}\end{array}} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP