Cho bảng số liệu:
LAO ĐỘNG PHÂN THEO KHU VỰC KINH TẾ NƯỚC TA, GIAI ĐOẠN 2009 - 2019
(Đơn vị: Nghìn người)
Năm
2009
2013
2017
2019
Khu vực I
24606,0
24399,3
21458,7
18831,4
Khu vực II
9561,6
11086,0
14104,5
16456,7
Khu vực III
13576,0
16722,5
18145,1
19371,1
(Nguồn: Niên giám thống kê 2019, NXB Thống kê, 2020)
Theo bảng số liệu, để thể hiện tốc độ tăng trưởng lao động phân theo khu vực kinh tế nước ta giai đoạn 2009 - 2019, dạng biểu đồ nào sau đây là thích hợp nhất?
Cho bảng số liệu:
LAO ĐỘNG PHÂN THEO KHU VỰC KINH TẾ NƯỚC TA, GIAI ĐOẠN 2009 - 2019
(Đơn vị: Nghìn người)
Năm |
2009 |
2013 |
2017 |
2019 |
Khu vực I |
24606,0 |
24399,3 |
21458,7 |
18831,4 |
Khu vực II |
9561,6 |
11086,0 |
14104,5 |
16456,7 |
Khu vực III |
13576,0 |
16722,5 |
18145,1 |
19371,1 |
(Nguồn: Niên giám thống kê 2019, NXB Thống kê, 2020)
Theo bảng số liệu, để thể hiện tốc độ tăng trưởng lao động phân theo khu vực kinh tế nước ta giai đoạn 2009 - 2019, dạng biểu đồ nào sau đây là thích hợp nhất?Quảng cáo
Trả lời:
Đấp sn D
Phương pháp giải:
Kĩ năng nhận dạng biểu đồ
Giải chi tiết:
- Xác định từ khóa: Tốc độ tăng trưởng
=> biểu đồ thích hợp: Đường
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(1,50{\mkern 1mu} {m^3}\)
Phương pháp giải:
- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)
- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).
- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).
Giải chi tiết:

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).
Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)
\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)
Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).
Lời giải
Đáp án A
Phương pháp giải:
Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).
Giải chi tiết:
Phương thức biểu đạt tự sự.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.