Hai quả cầu nhỏ giống nhau đặt trong không khí. Một quả mang điện tích 1,92pC và một quả không mang điện. Cho hai quả cầu tiếp xúc đến khi cân bằng điện rồi tách chúng ra cách nhau 3cm. Số electron mà hai quả trao đổi là:
Hai quả cầu nhỏ giống nhau đặt trong không khí. Một quả mang điện tích 1,92pC và một quả không mang điện. Cho hai quả cầu tiếp xúc đến khi cân bằng điện rồi tách chúng ra cách nhau 3cm. Số electron mà hai quả trao đổi là:
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải:
Định luật bảo toàn điện tích: \({q_1}^\prime + {q_2}^\prime = {q_1} + {q_2}\)
Số electron: \({n_e} = \frac{{\Delta q}}{e}\)
Giải chi tiết:
Hai quả cầu giống nhau, sau khi tiếp xúc, điện tích của hai quả cầu là:
\({q_1}^\prime = {q_2}^\prime = \frac{{{q_1} + {q_2}}}{2} = \frac{{0 + 1,{{92.10}^{ - 12}}}}{2} = 9,{6.10^{ - 13}}{\mkern 1mu} {\mkern 1mu} \left( C \right)\)
Số electron mà hai quả cầu trao đổi là:
\({n_e} = \frac{{\Delta {q_1}}}{{\left| e \right|}} = \frac{{\left| {{q_1}^\prime - {q_1}} \right|}}{{\left| e \right|}} = \frac{{\left| {9,{{6.10}^{ - 13}} - 0} \right|}}{{\left| { - 1,{{6.10}^{ - 19}}} \right|}} = {6.10^6}{\mkern 1mu} {\mkern 1mu} \left( {electron} \right)\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(1,50{\mkern 1mu} {m^3}\)
Phương pháp giải:
- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)
- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).
- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).
Giải chi tiết:

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).
Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)
\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)
Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).
Lời giải
Đáp án A
Phương pháp giải:
Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).
Giải chi tiết:
Phương thức biểu đạt tự sự.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.