Câu hỏi:

01/07/2022 410 Lưu

Trong thí nghiệm khe Young ta thu được hệ thống vân sáng, vân tối trên màn. Xét hai điểm A, B đối xứng qua vân trung tâm, khi màn cách hai khe một khoảng là D thì A, B là vân sáng. Dịch chuyển màn ra xa hai khe một khoảng dd thì A, B là vân sáng và đếm được số vân sáng trên đoạn AB trước và sau khi dịch chuyển màn hơn kém nhau 4. Nếu dịch tiếp màn ra xa hai khe một khoảng 9d nữa thì A, B lại là vân sáng và nếu dịch tiếp màn ra xa nữa thì tại A và B không còn xuất hiện vân sáng nữa. Tại A khi chưa dịch chuyển màn là vân sáng thứ mấy?

A. 5

B. 4

C. 7

D. 6

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Khoảng vân: \(i = \frac{{\lambda D}}{a}\)

Vị trí vân sáng: \({x_s} = ki\)

Giải chi tiết:

Ban đầu, tại A là vân sáng, ta có: \({x_A} = ki = k\frac{{\lambda D}}{a}\)

Khi dịch chuyển màn ra xa một khoảng d, tại A có: \({x_A} = k'i' = k'.\frac{{\lambda \left( {D + d} \right)}}{a}\)

Lại có: \(i' > i \to \) số vân sáng trên AB giảm

Trên AB có số vân sáng giảm 4 vân \( \to k' = k - 2\)

\( \Rightarrow {x_A} = k\frac{{\lambda D}}{a} = \left( {k - 2} \right)\frac{{\lambda \left( {D + d} \right)}}{a}\)

\( \Rightarrow kD = \left( {k - 2} \right)\left( {D + d} \right){\mkern 1mu} {\mkern 1mu} \left( 1 \right)\)

Nếu dịch chuyển tiếp màn ra xa 9d và nếu nếu dịch tiếp màn ra xa nữa thì tại A B không còn xuất hiện vân sáng → tại A là vân sáng bậc \(1{\mkern 1mu} {\mkern 1mu} \left( {k'' = 1} \right)\)

Ta có: \({x_A} = k''.i'' = 1.\frac{{\lambda \left( {D + 10d} \right)}}{a} = \frac{{\lambda \left( {D + 10d} \right)}}{a}\)

\( \Rightarrow {x_A} = k\frac{{\lambda D}}{a} = \frac{{\lambda \left( {D + 10d} \right)}}{a}\)

\( \Rightarrow kD = D + 10d \Rightarrow d = \frac{{\left( {k - 1} \right)D}}{{10}}\)

Thay vào (1), ta có: \(kD = \left( {k - 2} \right).\left( {D + \frac{{\left( {k - 1} \right)D}}{{10}}} \right)\)

\( \Rightarrow k = \left( {k - 2} \right).\left( {1 + \frac{{k - 1}}{{10}}} \right) \Rightarrow k = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

A. Phương thức biểu đạt tự sự

B. Phương thức biểu đạt nghị luận             

C. Phương thức biểu đạt miêu tả
D. Phương thức biểu đạt biểu cảm

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. sản xuất lúa gạo, nuôi trồng thủy sản

B. khai thác gỗ tròn, trồng cây dược liệu     

C. thủy điện, cây công nghiệp nhiệt đới

D. khai thác các khoáng sản, sản xuất ô tô

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Amilozơ có cấu trúc mạch phân nhánh.

B. Tơ tằm thuộc loại tơ thiên nhiên.

C. Tinh bột là một loại polime bán tổng hợp.

D. Tơ visco thuộc loại tơ tổng hợp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP