Câu hỏi:

01/07/2022 346

Trong thí nghiệm khe Young ta thu được hệ thống vân sáng, vân tối trên màn. Xét hai điểm A, B đối xứng qua vân trung tâm, khi màn cách hai khe một khoảng là D thì A, B là vân sáng. Dịch chuyển màn ra xa hai khe một khoảng dd thì A, B là vân sáng và đếm được số vân sáng trên đoạn AB trước và sau khi dịch chuyển màn hơn kém nhau 4. Nếu dịch tiếp màn ra xa hai khe một khoảng 9d nữa thì A, B lại là vân sáng và nếu dịch tiếp màn ra xa nữa thì tại A và B không còn xuất hiện vân sáng nữa. Tại A khi chưa dịch chuyển màn là vân sáng thứ mấy?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Khoảng vân: \(i = \frac{{\lambda D}}{a}\)

Vị trí vân sáng: \({x_s} = ki\)

Giải chi tiết:

Ban đầu, tại A là vân sáng, ta có: \({x_A} = ki = k\frac{{\lambda D}}{a}\)

Khi dịch chuyển màn ra xa một khoảng d, tại A có: \({x_A} = k'i' = k'.\frac{{\lambda \left( {D + d} \right)}}{a}\)

Lại có: \(i' > i \to \) số vân sáng trên AB giảm

Trên AB có số vân sáng giảm 4 vân \( \to k' = k - 2\)

\( \Rightarrow {x_A} = k\frac{{\lambda D}}{a} = \left( {k - 2} \right)\frac{{\lambda \left( {D + d} \right)}}{a}\)

\( \Rightarrow kD = \left( {k - 2} \right)\left( {D + d} \right){\mkern 1mu} {\mkern 1mu} \left( 1 \right)\)

Nếu dịch chuyển tiếp màn ra xa 9d và nếu nếu dịch tiếp màn ra xa nữa thì tại A B không còn xuất hiện vân sáng → tại A là vân sáng bậc \(1{\mkern 1mu} {\mkern 1mu} \left( {k'' = 1} \right)\)

Ta có: \({x_A} = k''.i'' = 1.\frac{{\lambda \left( {D + 10d} \right)}}{a} = \frac{{\lambda \left( {D + 10d} \right)}}{a}\)

\( \Rightarrow {x_A} = k\frac{{\lambda D}}{a} = \frac{{\lambda \left( {D + 10d} \right)}}{a}\)

\( \Rightarrow kD = D + 10d \Rightarrow d = \frac{{\left( {k - 1} \right)D}}{{10}}\)

Thay vào (1), ta có: \(kD = \left( {k - 2} \right).\left( {D + \frac{{\left( {k - 1} \right)D}}{{10}}} \right)\)

\( \Rightarrow k = \left( {k - 2} \right).\left( {1 + \frac{{k - 1}}{{10}}} \right) \Rightarrow k = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Xem đáp án » 13/07/2024 31,358

Câu 2:

Phương thức biểu đạt chính trong đoạn trích là gì?

Xem đáp án » 01/07/2022 14,339

Câu 3:

Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?

Xem đáp án » 13/07/2024 6,732

Câu 4:

Tây Nguyên hiện nay phát triển mạnh

Xem đáp án » 01/07/2022 6,540

Câu 5:

Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:

Xem đáp án » 01/07/2022 6,016

Câu 6:

Phát biểu nào sau đây đúng?

Xem đáp án » 01/07/2022 5,843

Câu 7:

Litva sẽ tham gia vào cộng đồng chung châu Âu sử dụng đồng Euro là đồng tiền chung vào ngày 01 tháng 01 năm 2015. Để kỷ niệm thời khắc lịch sử chung này, chính quyền đất nước này quyết định dùng 122550 đồng tiền xu Litas Lithuania cũ của đất nước để xếp một mô hình kim tự tháp (như hình vẽ bên). Biết rằng tầng dưới cùng có 4901 đồng và cứ lên thêm một tầng thì số đồng xu giảm đi 100 đồng. Hỏi mô hình Kim tự tháp này có tất cả bao nhiêu tầng?

Litva sẽ tham gia vào cộng đồng chung châu Âu sử dụng đồng Euro (ảnh 1)

Xem đáp án » 01/07/2022 5,117

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store