Cho 0,25 molMgO tan hoàn toàn trong một lượng vừa đủ dung dịch H2SO4 25% đun nóng, sau đó làm nguội dung dịch đến 10oC. Tính khối lượng tinh thể MgSO4.7H2O đã tách ra khỏi dung dịch, biết rằng độ tan của MgSO4 ở 100C là 28,2 gam.
Cho 0,25 molMgO tan hoàn toàn trong một lượng vừa đủ dung dịch H2SO4 25% đun nóng, sau đó làm nguội dung dịch đến 10oC. Tính khối lượng tinh thể MgSO4.7H2O đã tách ra khỏi dung dịch, biết rằng độ tan của MgSO4 ở 100C là 28,2 gam.
Quảng cáo
Trả lời:
Đáp án B
Phương pháp giải:
Độ tan (S) của một chất trong nước là số gam chất đó hòa tan trong 100 gam nước để tạo thành dung dịch bão hòa ở một nhiệt độ xác định.
Giải chi tiết:
MgO + H2SO4 → MgSO4 + H2O
0,25 → 0,25 0,25 0,25 mol
mH2SO4 = 0,25.98 = 24,5 gam
→ Khối lượng nước sau phản ứng: \({m_{H2O}} = \frac{{75}}{{25}}.24,5 + 0,25.18 = 78gam\)
Gọi x là số mol MgSO4.7H2O kết tinh
→ mMgSO4 còn lại = mMgSO4 ban đầu - mMgSO4 tách ra = 0,25.120 - 120x = 30 - 120x (gam)
mH2O còn lại = mH2O ban đầu - mH2O tách ra= 78 - 7x.18 = 78 - 126x (gam)
Ta có phương trình độ tan của MgSO4 ở 100C là: \(S = \frac{{30 - 120x}}{{78 - 126x}} \times 100 = 28,2\)
→ x = 0,09476 mol
→ mMgSO4.7H2O = 0,09476.246 = 23,31 gam.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(1,50{\mkern 1mu} {m^3}\)
Phương pháp giải:
- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)
- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).
- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).
Giải chi tiết:

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).
Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)
\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)
Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).
Lời giải
Đáp án A
Phương pháp giải:
Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).
Giải chi tiết:
Phương thức biểu đạt tự sự.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.