Câu hỏi:

05/07/2022 406

Cho hàm số \[y = f\left( x \right)\]. Biết rằng hàm số f(x) có đạo hàm là \[f'\left( x \right)\] và hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ bên. Khẳng định nào sau đây sai?

Cho hàm số y=f(x) . Biết rằng hàm số f(x) có đạo hàm  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có bảng xét dấu \(f'\left( x \right)\).

Cho hàm số y=f(x) . Biết rằng hàm số f(x) có đạo hàm  (ảnh 2)

Dựa vào bảng xét dấu ta thấy:

Hàm \(f\left( x \right)\) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\) suy ra A đúng.

Hàm \(f\left( x \right)\) đồng biến trên khoảng \(\left( {1; + \infty } \right)\) suy ra B đúng.

Trên \(\left( { - 1;1} \right)\) thì hàm số \(f\left( x \right)\) luôn tăng suy ra C đúng suy ra chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).

Câu 2

Lời giải

Đáp án B

Dựa vào đồ thị suy ra \(y = a\left( {x + 2} \right){\left( {x - 1} \right)^2}\).

Do đồ thị hàm số đi qua điểm \(\left( {0;2} \right) \Rightarrow 2 = 2{\rm{a}} \Rightarrow a = 1\)

Khi đó \(S = \int\limits_{ - 2}^1 {\left( {x + 2} \right){{\left( {x - 1} \right)}^2}d{\rm{x}}} = \frac{{27}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP