Câu hỏi:

05/07/2022 131

Một người thợ thủ công cần làm một cái thùng hình hộp đứng không nắp đáy là hình vuông có thể tích \[100{\mkern 1mu} c{m^3}\]. Để tiết kiệm vật liệu làm thùng, người đó cần thiết kế sao cho tổng S của diện tích xung quanh và diện tích mặt đáy là nhỏ nhất.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi cạnh đáy, cạnh bên của hình hộp đứng lần lượt là xy (\(x,y > 0\))

Ta có: \(V = 100 \Rightarrow {x^2}y = 100 \Rightarrow y = \frac{{100}}{{{x^2}}}\). Khi đó: \(S = 4{\rm{x}}y + {x^2} = 4{\rm{x}}{\rm{.}}\frac{{100}}{{{x^2}}} + {x^2} = \frac{{400}}{x} + {x^2}\)

\( = \frac{{200}}{x} + \frac{{200}}{x} + {x^2} \ge 3\sqrt[3]{{\frac{{200}}{x}.\frac{{200}}{x}.{x^2}}} = 3\sqrt[3]{{{{4.10}^3}}} = 30\sqrt[3]{{40}}\).

Vậy S đạt giá trị nhỏ nhất bằng \(30\sqrt[3]{{40}}\) khi \(\frac{{200}}{x} = {x^2} \Leftrightarrow {x^3} = 200 \Leftrightarrow x = \sqrt[3]{{200}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) giới hạn bởi đồ thị của hàm số bậc ba \[y = a{x^3} + b{x^2} + cx + d\] và trục hoành.

Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) (ảnh 1)

Xem đáp án » 05/07/2022 2,681

Câu 2:

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = {x^3} - 3{x^2} + 4\] trên đoạn \[\left[ { - 1;3} \right]\]. Giá trị của biểu thức \[P = {M^2} - {m^2}\]

Xem đáp án » 05/07/2022 2,588

Câu 3:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {\left( {3 - 5x} \right)^4}.\]

Xem đáp án » 05/07/2022 2,241

Câu 4:

Một hình trụ có bán kính đáy và chiều cao đều bằng 4 dm. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy. Biết mặt phẳng (ABCD) không vuông góc với mặt đáy của hình trụ. Tính diện tích S của hình vuông \[ABCD.\]

Xem đáp án » 05/07/2022 2,048

Câu 5:

Cho số phức \[z = a + bi\left( {a,b \in \mathbb{R}} \right)\] thỏa mãn \[z + 7 + i - \left| z \right|\left( {2 + i} \right) = 0\] \[\left| z \right| < 3.\] Tính giá trị \[P = a + b.\]

Xem đáp án » 05/07/2022 1,620

Câu 6:

Cho hàm số \[y = f\left( x \right).\] Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ bên. Bất phương trình \[3f\left( x \right) + {x^3} < a - 3x\ln x\] có nghiệm thuộc đoạn \[\left[ {1;2} \right]\] khi và chỉ khi

Cho hàm số  y=f(x) Hàm số y=f'(x) có đồ thị như hình vẽ bên (ảnh 1)

Xem đáp án » 05/07/2022 1,542

Câu 7:

Cho hàm số \[y = f\left( x \right)\] xác định trên \[\mathbb{R}\]\[f\left( { - 3} \right) > 8,\;f\left( 4 \right) > \frac{9}{2},f\left( 2 \right) < \frac{1}{2}.\] Biết rằng hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[y = \left| {2f\left( x \right) - {{\left( {x - 1} \right)}^2}} \right|\]

Cho hàm số y=f(x)  xác định trên  R có  f(-3)>8 (ảnh 1)

Xem đáp án » 05/07/2022 1,280

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn