Câu hỏi:

05/07/2022 449

Có bao nhiêu giá trị nguyên của tham số m (với \[\left| m \right| < 10\]) để phương trình \[{2^{x - 1}} = {\log _4}\left( {x + 2m} \right) + m\] có nghiệm

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có: \({2^{x - 1}} = {\log _4}\left( {x + 2m} \right) + m \Leftrightarrow \frac{1}{2}{2^x} = {\log _{{2^2}}}\left( {x + 2m} \right) + m \Leftrightarrow {2^x} = {\log _2}\left( {x + 2m} \right) + 2m\)

Đặt \(y = {\log _2}\left( {x + 2m} \right)\) suy ra \({2^y} = x + 2m\)

Ta có hệ phương trình \(\left\{ \begin{array}{l}{2^x} = y + 2m\\{2^y} = x + 2m\end{array} \right. \Rightarrow {2^x} + x + 2m = {2^y} + y + 2m\) (cộng chéo) \( \Leftrightarrow {2^x} + x = {2^y} + y\) (*)

Xét hàm số \(f\left( t \right) = {2^t} + t{\rm{ }}\left( {t \in \mathbb{R}} \right)\) ta có: \(f'\left( t \right) = {2^t}\ln 2 + 1 > 0{\rm{ }}\left( {\forall t \in \mathbb{R}} \right)\) suy ra hàm số \(f\left( t \right)\) đồng biến trên \(\mathbb{R}\).

Suy ra (*) \( \Leftrightarrow f\left( x \right) = f\left( y \right) \Leftrightarrow x = y \Rightarrow {2^x} - x = 2m\)

Xét hàm số \(g\left( x \right) = {2^x} - x\) với \(x \in \mathbb{R}\) ta có: \(g'\left( x \right) = {2^x}\ln 2 - 1 = 0 \Leftrightarrow {2^x} = \frac{1}{{\ln 2}} \Leftrightarrow x = {\log _2}\frac{1}{{\ln 2}}\).

Ta có bảng biến thiên:

Có bao nhiêu giá trị nguyên của tham số m (với |m|<10 ) để phương trình  (ảnh 1)

Phương trình đã cho có nghiệm khi và chỉ khi \(m \ge g\left( {{{\log }_2}\frac{1}{{\ln 2}}} \right) \approx 0,91\).

Kết hợp \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\\left| m \right| < 10\end{array} \right. \Rightarrow m = \left\{ {1;2;3;4;5;6;7;8;9} \right\}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {\left( {3 - 5x} \right)^4}.\]

Xem đáp án » 05/07/2022 5,877

Câu 2:

Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) giới hạn bởi đồ thị của hàm số bậc ba \[y = a{x^3} + b{x^2} + cx + d\] và trục hoành.

Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) (ảnh 1)

Xem đáp án » 05/07/2022 5,013

Câu 3:

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = {x^3} - 3{x^2} + 4\] trên đoạn \[\left[ { - 1;3} \right]\]. Giá trị của biểu thức \[P = {M^2} - {m^2}\]

Xem đáp án » 05/07/2022 3,251

Câu 4:

Một hình trụ có bán kính đáy và chiều cao đều bằng 4 dm. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy. Biết mặt phẳng (ABCD) không vuông góc với mặt đáy của hình trụ. Tính diện tích S của hình vuông \[ABCD.\]

Xem đáp án » 05/07/2022 2,153

Câu 5:

Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình hình chiếu của đường thẳng \[d:\;\frac{{x + 3}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 1}}\] trên mặt phẳng \[\left( P \right):\;x - 3y + 2z + 6 = 0?\]

Xem đáp án » 05/07/2022 2,109

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \[\left( P \right):x + y - z - 2 = 0,\] \[\left( Q \right):x + 3y - 12 = 0\] đường thẳng \[d:\frac{{x - 1}}{3} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 1}}{2}.\] Viết phương trình mặt phẳng \[\left( R \right)\] chứa đường thẳng d và giao tuyến của hai mặt phẳng \[\left( P \right),\left( Q \right).\]

Xem đáp án » 05/07/2022 1,891

Câu 7:

Cho hàm số \[y = f\left( x \right).\] Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ bên. Bất phương trình \[3f\left( x \right) + {x^3} < a - 3x\ln x\] có nghiệm thuộc đoạn \[\left[ {1;2} \right]\] khi và chỉ khi

Cho hàm số  y=f(x) Hàm số y=f'(x) có đồ thị như hình vẽ bên (ảnh 1)

Xem đáp án » 05/07/2022 1,857