Câu hỏi:

13/07/2024 6,097

Một xe ô tô chở hàng đi từ A đến B với vận tốc 50 km/h. Sau khi đến B ô tô dừng lại để giao hàng 30 phút rồi quay về A với vận tốc 60 km/h. Tính độ dài quãng đường AB, biết rằng tổng thời gian ô tô đi, thời gian về và nghỉ là 6 giờ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (km) là độ dài quãng đường AB (x > 0)

Xe ô tô đi từ A đến B với vận tốc 50 km/h nên thời gian ô tô chở hàng đi từ A đến B là:

x50 (giờ).

Ô tô đi từ B về A với vận tốc 60 km/h nên thời gian ô tô chở hàng đi từ B đến A là:

x60 (giờ)

Đổi 30 phút = 12 giờ.

Vì tổng thời gian ô tô đi, thời gian về và nghỉ là 6 giờ nên ta có phương trình:

x50+ x60 + 12 = 6

Û 150+160x=612

Û 11300x=112

Û x = 150 (thỏa mãn)

Vậy độ dài quãng đường AB là 150 km.
B

Bảo Long

Một ô tô đi từ A đến B với vận tốc 45km/h,đi từ B về A với vận tốc 50 km/h.Thời gian lúc về kém thời gian lúc đi là 18 phút.hỏi quãng đường AB dài bao nhiêu km?

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Qua A kẻ đường cao AH (H thuộc BC). (ảnh 1)

a) Vì tam giác ABC vuông tại A nên BAC^=90o

Theo đề bài, AH là đường cao của tam giác ABC nên AH ^ BC hay AHC^ = 90°

Do đó BAC^ = AHC^ = 90°.

Xét ABC và ∆HAC có:

 BAC^=AHC^ = 90° (chứng minh trên)

C^ chung

Do đó ABC  ∆HAC (g.g)

b) Áp dụng định lý Py-ta-go vào ABC vuông tại A, ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100

Suy ra BC = 10 cm.

Tam giác ABC có AH là đường cao tương ứng với cạnh đáy BC nên:

SABC = 12.AH. BC (1)

Mặt khác, tam giác ABC vuông tại A nên:

SABC = 12.AB.AC (2)

Từ (1) và (2) suy ra SABC = 12.AB.AC = 12.AH. BC

Do đó AH = AB.ACBC = 6.810= 4,8 (cm).

Vậy BC = 10 cm; AH = 4,8 cm.

c) Ta có: AHE^ + EHC^ = 90° và EHC^ + ECH^= 90°

Suy ra AHE^ ECH^

Xét AEH và ∆CHE có:

 AHE^=ECH^ (chứng minh trên)

AEH^=HAC^ = 90° (HE ^ AC tại E)

Do đó AEH  ∆CHE (g.g)

Suy ra AEHE=HECE (các cạnh tương ứng)

Do đó HE2 = AE. EC (đpcm) (1)

d) Ta có: AB AC (vì ABC vuông tại A) và HE AC (giả thiết)

Suy ra AB // HE.

Do đó BAI^ = IHE^ (hai góc so le trong)

Xét AIF và ∆EIH có:

BAI^ = IHE^ (chứng minh trên)

IA = IH (giả thiết)

FIA^ = HIE^ (hai góc đối đỉnh)

Do đó AIF = ∆EIH (g.c.g)

Suy ra AF = HE (hai cạnh tương ứng)

Mà AF // HE (vì HE // AB)

Do đó AEHF là hình bình hành.

Mặt khác, FAE^ = 90°

Do đó AEHF là hình chữ nhật

Suy ra AFH^= 90°.

Do đó AFH^ EHF^ = 90°.

Mặt khác, ABCD là hình chữ nhật nên hai đường chéo AH và EF bằng nhau; AH cắt EF tại trung điểm I.

Suy ra IH = IF nên ∆HIF cân tại I.

Do đó IHF^=IFH^.

Xét AFH và ∆EHF có:

IHF^=IFH^ (chứng minh trên)

AFH^ = EHF^= 90° (chứng minh trên)

Do đó AFH  ∆EHF (g.g).

Suy ra FAHF=HFFB (các cặp cạnh tương ứng)

Nên FA . FB = HF2 (2)

Từ (1) và (2) suy ra AF. FB + AE. EC = HF2 + HE2

Xét FHE vuông góc tại H có:

HF2 + HE2 = EF2 = AH2 (vì EF = AH)

Do đó AH2 = FA. FB + EA. EC (đpcm).

Lời giải

a) Khi x = −1 (TMĐK), giá trị của biểu thức A bằng:

A = x1x29 = 11129 = 14.

Vậy khi x = −1 giá trị của biểu thức A bằng 14.

b) Ta có: A = x1x29 1x3

= x1x29+x+3x29= 2x+2x3x+3.

P = AB=  2x+2x3x+32x32x+2x3x+3:2x3

= 2x+2x3x+3. x32x+1x+3.

c) Ta có: P = x+1x+3 = x+32x+3 = 1 − 2x+3

Để P có giá trị nguyên thì giá trị của 2x+3 cũng phải nguyên.

Do đó (x + 3) Î Ư(2) = {±1; ±2}.

Ta có bảng sau:
Cho biểu thức: A = x - 1/ x ^2 - 9 + 1/x +3 và B= x/x -3 với x khác cộng trừ 3 (ảnh 1)
Vậy các giá trị của x để P nhận giá trị nguyên là: {−5; −4; −2; −1}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP