Câu hỏi:
13/07/2024 9,112Cho tam giác ABC vuông tại A. Qua A kẻ đường cao AH (H Î BC).
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC.
b) Khi cho AB = 6cm; AC = 8cm, tính độ dài đoạn BC và AH.
c) Từ H kẻ HE vuông góc với AC tại E. Chứng minh HE2 = AE. EC.
d) Gọi I là trung điểm của AH, EI cắt AB tại F. Chứng minh AH2 = FA. FB + EA. EC.Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì tam giác ABC vuông tại A nên
Theo đề bài, AH là đường cao của tam giác ABC nên AH ^ BC hay = 90°
Do đó = 90°.
Xét ∆ABC và ∆HAC có:
= 90° (chứng minh trên)
chung
Do đó ∆ABC ∆HAC (g.g)b) Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100
Suy ra BC = 10 cm.
Tam giác ABC có AH là đường cao tương ứng với cạnh đáy BC nên:
SABC = .AH. BC (1)
Mặt khác, tam giác ABC vuông tại A nên:
SABC = .AB.AC (2)
Từ (1) và (2) suy ra SABC = .AB.AC = .AH. BC
Do đó AH = = = 4,8 (cm).
Vậy BC = 10 cm; AH = 4,8 cm.c) Ta có: + = 90° và + = 90°
Suy ra =
Xét ∆AEH và ∆CHE có:
(chứng minh trên)
= 90° (HE ^ AC tại E)
Do đó ∆AEH ∆CHE (g.g)
Suy ra (các cạnh tương ứng)
Do đó HE2 = AE. EC (đpcm) (1)d) Ta có: AB ⊥ AC (vì ∆ABC vuông tại A) và HE ⊥ AC (giả thiết)
Suy ra AB // HE.
Do đó = (hai góc so le trong)
Xét ∆AIF và ∆EIH có:
= (chứng minh trên)
IA = IH (giả thiết)
= (hai góc đối đỉnh)
Do đó ∆AIF = ∆EIH (g.c.g)
Suy ra AF = HE (hai cạnh tương ứng)
Mà AF // HE (vì HE // AB)
Do đó AEHF là hình bình hành.
Mặt khác, = 90°
Do đó AEHF là hình chữ nhật
Suy ra = 90°.
Do đó = = 90°.
Mặt khác, ABCD là hình chữ nhật nên hai đường chéo AH và EF bằng nhau; AH cắt EF tại trung điểm I.
Suy ra IH = IF nên ∆HIF cân tại I.
Do đó .
Xét ∆AFH và ∆EHF có:
(chứng minh trên)
= = 90° (chứng minh trên)
Do đó ∆AFH ∆EHF (g.g).
Suy ra (các cặp cạnh tương ứng)
Nên FA . FB = HF2 (2)
Từ (1) và (2) suy ra AF. FB + AE. EC = HF2 + HE2
Xét ∆FHE vuông góc tại H có:
HF2 + HE2 = EF2 = AH2 (vì EF = AH)
Do đó AH2 = FA. FB + EA. EC (đpcm).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho (a + b + c)2 = a2 + b2 + c2 và a, b, c khác 0.
Chứng minh rằng: + + = .Câu 3:
Cho biểu thức:
A = + và B = với x ≠ ± 3
a) Tính giá trị của biểu thức A khi x = −1.
b) Rút gọn biểu thức P = A : B.
c) Tìm x Î ℤ để P có giá trị là số nguyên.Câu 4:
Giải các phương trình sau:
a) x(x − 1) − (x2 − 3x + 5) = 0.
b) (x − 5)2 + 6x − 30 = 0.
c) − = .Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
về câu hỏi!