Câu hỏi:
08/07/2022 646Quảng cáo
Trả lời:
Đáp án đúng là: A
Trường hợp 1. m = 0. Khi đó f(x) = – 2x – 1 < 0 \[ \Leftrightarrow x > - \frac{1}{2}\]
Vậy m = 0 không thỏa mãn f(x) < 0 với \[\forall x \in \mathbb{R}\]
Trường hợp 2. m ≠ 0.
Khi đó: f(x) = mx2 – 2x – 1 < 0 với \[\forall x \in \mathbb{R}\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = m < 0\\\Delta ' = 1 + m < 0\end{array} \right. \Leftrightarrow m < - 1\]
Vậy m < – 1 thỏa mãn bài toán.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Dựa vào đồ thị ta có trục đối xứng x = 1
Đáp án A, B đều có trục đối xứng x = 1 nên A, B đều thỏa mãn
Đáp án C có trục đối xứng x = 2 nên loại đáp án C.
Đáp án D có trục đối xứng \[x = \frac{1}{4}\] nên loại đáp án D.
Dựa vào đồ thị ta có tọa độ đỉnh I(1; – 3)
Đáp án A có tọa độ đỉnh I(1; – 3) đáp án A thỏa mãn.
Đáp án B có tọa độ đỉnh I(1; – 2) nên loại đáp án B.
Lời giải
Đáp án đúng là: B
Tọa độ đỉnh của hàm số là I(1; 2)
Bảng biến thiên
Từ bảng biến thiên ta có hàm số tăng từ trái sang phải trên khoảng (– ∞; 1) nên hàm số đồng biến trên khoảng (– ∞; 1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.