Câu hỏi:
08/07/2022 195Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: a = 2 > 0. Do đó, 2x2 – 4x + m + 5 > 0, \(\forall x \ge 3\) sẽ có trường hợp sau:
Trường hợp 1. ∆ < 0 \( \Leftrightarrow \) (– 4)2 – 4.2.(m + 5) < 0 \( \Leftrightarrow \) m > – 3, khi đó
2x2 – 4x + m + 5 > 0 với \(\forall x \in \mathbb{R}\).
Do đó 2x2 – 4x + m + 5 > 0 với \(\forall x \ge 3\).
Trường hợp 2. ∆ ≥ 0, khi đó phương trình 2x2 – 4x + m + 5 = 0 sẽ có hai nghiệm x1; x2.
Do đó, để 2x2 – 4x + m + 5 > 0, \(\forall x \ge 3\)\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta \ge 0\\{x_1} \le {x_2} < 3\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta \ge 0\\a\,f\left( 3 \right) > 0\\\frac{S}{2} < 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 3\\2\left( {{{2.3}^2} - 4.3 + m + 5} \right) > 0\\1 < 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 3\\m > - 11\end{array} \right.\)\( \Leftrightarrow \). – 11 < m ≤ – 3
Kết hợp hai trường hợp lại ta được m > – 11 thì thì 2x2 – 4x + m + 5 > 0 với \(\forall x \ge 3\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Câu 4:
Cho parabol (P): y = ax2 + bx + 1. Xác định (P) biết rằng parabol đi qua hai điểm A(1; 4) và B(– 1; 2).
Câu 5:
Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây
Câu 7:
Tổng các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
50 câu trắc nghiệm Thống kê nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
về câu hỏi!