Câu hỏi:

08/07/2022 378 Lưu

Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?

A. d :\[\left\{ \begin{array}{l}x = 10 + t\\y = 6\end{array} \right.\];

B. \[d:\left\{ \begin{array}{l}x = 2 + t\\y = - 10\end{array} \right.\];

C. \[d:\left\{ \begin{array}{l}x = 6\\y = - 10 - t\end{array} \right.\];    

D. \[d:\left\{ \begin{array}{l}x = 6\\y = - 10 + t\end{array} \right.\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp ứng đúng là: B

Ta có: \[d \bot Oy:x = 0 \to {\vec u_d} = \left( {1;0} \right)\], mặt khác \[M\left( {6; - 10} \right) \in d\]

Phương trình tham số \[d:\left\{ \begin{array}{l}x = 6 + t\\y = - 10\end{array} \right.\], với t = -4 ta được \[d:\left\{ \begin{array}{l}x = 2\\y = - 10\end{array} \right.\]

hay A (2; -10) \[ \in \]d \[ \to d:\left\{ \begin{array}{l}x = 2 + t\\y = - 10\end{array} \right.\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Trùng nhau.                        

B. Song song.

C. Vuông góc với nhau.            

D. Cắt nhau nhưng không vuông góc nhau.

Lời giải

Đáp án đúng là: B

Ta có: \[\left\{ \begin{array}{l}{d_1}:x - 2y + 1 = 0\\{d_2}: - 3x + 6y - 10 = 0\end{array} \right.\]

Giải hệ phương trình: \[\left\{ \begin{array}{l}x - 2y + 1 = 0\\ - 3x + 6y - 10 = 0\end{array} \right.\]\[ \Leftrightarrow \] \[\left\{ \begin{array}{l}3x - 6y + 3 = 0\\ - 3x + 6y - 10 = 0\end{array} \right.\]\[ \Leftrightarrow \]-7 = 0 (vô lý)

Suy ra hệ phương trình trên vô nghiệm

Vì vậy hai đường thẳng song song. 

Câu 2

A.   \[d:\left\{ \begin{array}{l}x = - 1\\y = 2\end{array} \right.\];

B. \[d:\left\{ \begin{array}{l}x = 2t\\y = t\end{array} \right.\];            

C. \[d:\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\];         

D. \[d:\left\{ \begin{array}{l}x = - 2t\\y = t\end{array} \right.\].

Lời giải

Đáp án đúng là: C

Đường thẳng d cần tìm song song với đường thẳng – x + 2y + 3 = 0 nên có VTCP là: \[\overrightarrow u = \left( { - 1;2} \right)\].

Do đó phương trình tham số của đường thẳng d đi qua gốc tọa độ và nhận \[\overrightarrow u = \left( { - 1;2} \right)\] làm vectơ chỉ phương là: \[\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right).\]

Câu 3

A.   Trùng nhau.                      

B. Song song.

C. Vuông góc với nhau.            

D. Cắt nhau nhưng không vuông góc nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{x^2} + {y^2} + 2x + 4y - 4 = 0;\]                      

B. \[{x^2} + {y^2} + 2x - 4y - 4 = 0;\]

C. \[{x^2} + {y^2} - 2x + 4y - 4 = 0;\]                       

D. \[{x^2} + {y^2} - 2x - 4y - 4 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{d_1}:\left\{ \begin{array}{l}x = 3 + 2t\\y = t\end{array} \right.\];

B. \[{d_2}:\left\{ \begin{array}{l}x = - t\\y = - 2 + 3t\end{array} \right.\];   

C. \[{d_3}:\left\{ \begin{array}{l}x = 3 + t\\y = - 2t\end{array} \right.\];

D. \[{d_4}:\left\{ \begin{array}{l}x = 3t\\y = - 2\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = - \frac{3}{4};\)         

B. \(x = \frac{3}{4};\)             

C.\(x = \frac{3}{2};\)             

D. \(x = - \frac{3}{8}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2x – 5y + 4 = 0 ;                        

B. 3x – 5y + 10 = 0 ;

C. 5x – 2y – 10 = 0 ;                                                 

D. 2x – 5x + 10 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP