Câu hỏi:

08/07/2022 811

Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là : D

Ta có: Vectơ chỉ phương của AB là \[{\vec u_{AB}} = \overrightarrow {AB} = \left( { - 2;6} \right) \to {\vec n_{AB}} = \left( {3;1} \right)\] là vectơ pháp tuyến của đường thẳng qua hai điểm A, B.

Mặt khác A (3; -1) \[ \in AB\], suy ra: \[AB:3\left( {x - 3} \right) + 1\left( {y + 1} \right) = 0\] hay \[AB:3x + y - 8 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có: \[\left\{ \begin{array}{l}{d_1}:x - 2y + 1 = 0\\{d_2}: - 3x + 6y - 10 = 0\end{array} \right.\]

Giải hệ phương trình: \[\left\{ \begin{array}{l}x - 2y + 1 = 0\\ - 3x + 6y - 10 = 0\end{array} \right.\]\[ \Leftrightarrow \] \[\left\{ \begin{array}{l}3x - 6y + 3 = 0\\ - 3x + 6y - 10 = 0\end{array} \right.\]\[ \Leftrightarrow \]-7 = 0 (vô lý)

Suy ra hệ phương trình trên vô nghiệm

Vì vậy hai đường thẳng song song. 

Câu 2

Lời giải

Đáp án đúng là: C

Đường thẳng d cần tìm song song với đường thẳng – x + 2y + 3 = 0 nên có VTCP là: \[\overrightarrow u = \left( { - 1;2} \right)\].

Do đó phương trình tham số của đường thẳng d đi qua gốc tọa độ và nhận \[\overrightarrow u = \left( { - 1;2} \right)\] làm vectơ chỉ phương là: \[\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right).\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP