Câu hỏi:
08/07/2022 289Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y + 3 = 0\], biết tiếp tuyến song song với đường thẳng d: 2x – y – 18 = 0.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: Đường tròn (C) có tâm I(-2; -2), R = \(\sqrt 5 \)và tiếp tuyến có dạng
\[\Delta \]: 2x – y + c = 0 (c ≠ -18)
Bán kính đường tròn: \[R = d\left( {I;\Delta } \right)\] \[ \Leftrightarrow \frac{{\left| {c - 2} \right|}}{{\sqrt 5 }} = \sqrt 5 \]
\[ \Leftrightarrow \left| {c - 2} \right| = 5\]\[ \Leftrightarrow \left[ \begin{array}{l}c - 2 = 5\\c - 2 = - 5\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}c = 7\\c = - 3\end{array} \right.\]
suy ra: \[\Delta \]:2x – y + 7 = 0 hoặc \[\Delta \]: 2x – y – 3 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Câu 2:
Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là:
Câu 3:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Câu 5:
Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
Câu 7:
Phương trình đường thẳng cắt hai trục tọa độ tại A(-5 ; 0) và B(0; 2) là:
về câu hỏi!